
A. Project Summary

Although the physical world is quantum mechanical in nature, our perceptions of
it are rooted in classical mechanics. Thus one is often confronted with the problem
of constructing a quantum formulation of a system from a knowledge of a classical
approximation to it. This process is called “quantization,” and over the years many
different quantization schemes have been developed.

Unfortunately, quantization is not a straightforward proposition. The main diffi-
culty stems from the discovery, over fifty years ago, by Groenewold and Van Hove of
an “obstruction” to quantization. Their “no-go theorem” asserts thatin principle it is
impossible to consistently quantize every classical observable on the phase space of a
freely moving particle in a physically meaningful way, regardless of which quantiza-
tion procedure is employed. Over the past few years, the principal investigator and his
collaborators proved that similar results hold for a wide variety of phase spaces. But
no-go theorems are not universally valid; the principal investigator has recently found
several phase spaces which admit consistent quantizations.

The main goals of this proposal are:
(i) To delineate the circumstances under which such obstructions will appear,

and to understand the mechanisms which produce them. Already substantial progress
has been made: the principal investigator and his collaborators have proven, in quite
general circumstances, the existence of obstructions to obtaining both finite- and infinite-
dimensional quantizations of compact phase spaces as well as finite-dimensional quan-
tizations of noncompact phase spaces.

(ii ) To compute, when an obstruction does exist, the largest subalgebras of ob-
servables that can be consistently quantized along with all their possible quantizations.
While this can sometimes be done in specific examples, little is known in general.
Moreover, this line of investigation has brought to light previously unknown quan-
tizations of various physical systems, and it is important to determine their physical
significance.

(iii ) To refine extant quantization procedures, or perhaps design new ones,
which are adapted to the obstruction in the sense that they will automatically be able
to quantize these subalgebras. Typically, standard techniques are able to quantize only
relatively “small” subalgebras of observables.

(iv) The above results are valid for quantization procedures which are “Hilbert
space-based.” It is therefore important to determine to what extent they remain valid
in other approaches, such as deformation quantization, which employs a somewhat
“looser” notion of quantization. Anecdotal evidence suggests that the obstructions
encountered in the Hilbert space-based context do indeed carry over to deformation
quantization as well. A key aim of the proposed research is to elucidate this connection.

The proposed research is in an area of active interest to mathematicians and physi-
cists alike. From a mathematical standpoint, this research will lead to interesting struc-
tural insights into the Poisson algebras of classical systems and their representations.
Physically, this research will substantially aid in clarifying the correspondence between
classical and quantum mechanics in general, and in particular will enhance our under-
standing of quantizations of specific classical systems.
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C. Project Description

I. Results from Prior NSF Research

a. NSF Award Number: DMS 96-23083
Amount: $73,493
Period of Support: 6/1/96–5/31/00

b. Title of Project: Studies in Quantization Theory

c. Summary of Results of Completed Work:

My previous NSF-funded research consisted mainly of a study of obstructions in quantization theory.
I also continued earlier work on analyzing the mathematical structure of classical field theory, and initiated a proj-
ect applying geometric quantization to quantum chemistry. I briefly summarize the results from each component
in turn. References cited below are to the list in Section D.

(i) OBSTRUCTIONS IN QUANTIZATION THEORY

In 1946 H. Groenewold and in 1951 L. van Hove proved theorems to the effect that it is impossible to quantize the
Poisson algebra of polynomials onR2n in such a way that the Heisenberg subalgebra h(2n) consisting of linear
polynomials is irreducibly represented [Gro, VH]. This result has led people to conjecture, roughly speaking,
that it is impossible to consistently quantize the entire Poisson algebra of a symplectic manifold subject to an
irreducibility requirement.I refer the reader to Section C.II following for the background of this problem, as well
as a more complete discussion of the issues involved here.

My research has been concerned with understanding the origins of Groenewold-Van Hove type obstructions
as well as delineating the circumstances under which they will appear. The first goal is to correctly set up the
problem, which involves defining what is meant by a “basic algebra of observables” (analogous to h(2n) on R2n)
which is to be irreducibly represented, as well as giving a precise meaning to the notion of “quantization.” All this
has been satisfactorily accomplished [Go5]. The precise definitions are somewhat technical, and so are deferred
until §C.II; here I shall use these terms intuitively. So letb be a basic algebra of observables on a symplectic
manifold M , and letO be a Lie subalgebra ofC∞(M) containingb. A quantizationof the pair(O, b) is a Lie
representation ofO on a Hilbert space which (amongst other things) is irreducible when restricted tob. The
Groenewold-Van Hove problemis to determine whetherO can be consistently quantized and, if not, to find the
largest Lie subalgebras ofO that can be quantized and to explicitly construct all their possible quantizations.

While the prevailing expectation is that “no-go” results should hold in a wide range of situations, there has
been little work done in this direction since Groenewold and Van Hove (possibly because the mathematical tools
with which to tackle this problem weren’t available). Thus the first step is to check whether the conjecture above
is in fact true in specific examples.

To this end, H. Grundling, C. Hurst, and I considered the quantization ofS2, thought of as the ‘internal’ phase
space of a nonrelativistic particle with spin [GGH]. We chose this example since it is structurally quite different
from R2n. We found that a no-go theorem indeed holds forS2. Let Pk (resp.Pk) denote the space of all spherical
harmonics of degreek (resp. of degree at mostk), and letP be the Poisson algebra of all spherical harmonics on
S2. Note thatP1 is isomorphic to su(2), which is the basic algebra in this instance, andP1 to u(2).

Theorem 1 There is no nontrivial quantization of(P, P1). Furthermore, no nontrivial quantization ofP1 can be
extended beyondP1 in P.

Thus there is an obstruction forS2 which is similar to that forR2n, except it is more ‘severe.’ Since all possible
quantizations ofP1 are explicitly known—these being the familiar spin representations of u(2)—we have thus
completely solved the Groenewold-Van Hove problem forS2.

H. Grundling and I then turned our attention toT∗S1, taking as a basic algebra the Euclidean algebra e(2)
= span{`, sinθ, cosθ}, where` is the angular momentum conjugate toθ . We showed that it too exhibits an
obstruction, and completely solved the Groenewold-Van Hove problem in this case as well [GGru1].
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BetweenR2n, S2, andT∗S1, we now have examples which exhibit a wide range of behaviors: from compact
to contractible, and whose quantizations are finite- as well as infinite-dimensional. Thus it would seem reasonable
to conjecture:

Let b be a basic algebra of observables on the symplectic manifoldM , and let P(b) be the Poisson
algebra of polynomials generated byb. Then there is no nontrivial quantization of the pair(P(b), b).

Surprisingly, this conjecture turns out to befalse. Consider the torus, thought of asR2/Z2. The natural choice
for a basic algebra in this instance is the Lie algebrat generated by{sin 2πx, cos 2πx, sin 2πy, cos 2πy}. (Thus
t consists of trigonometric polynomials of mean zero.) LetH be the Hilbert space of quasi-periodic functions

φ(x +m, y+ n) = e2π imyφ(x, y), m,n ∈ Z

which are square-integrable over(0,1]2. For eachf ∈ C∞(T2), define a (self-adjoint) operatorQ( f ) onH by

Q( f ) = −i h̄
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Then I have proven the following “go” theorem [Go4]:

Theorem 2 Q is a quantization of(C∞(T2), t) onH.

Thus there is no Groenewold-Van Hove obstruction to quantizing the torus. However, this example is crucially
different than the previous ones:R2n, S2, and T∗S1 all carry finite-dimensional basic algebras, butT2 does
not [GGG]. Consequently the irreducibility requirement ont is comparatively much weaker than in the other
examples, and so this is likely the reason whyC∞(T2) can be consistently quantized. So perhaps the conjecture
above will hold if the basic algebra is required to be finite-dimensional?

Surprisingly, the answer is “No!” A counterexample is provided byT∗R+ = {(q, p) ∈ R2 |q > 0} with
the “affine” basic algebra a(1)= span{pq,q2}. Several inequivalent quantizations of the polynomial algebra
P(a(1)) on L2(R+,dq/q) are explicitly constructed in [GGra1], cf. §C.II. Another simple example is either of
the nilpotent coadjoint orbitsN± in sl(2)∗ with basic algebra sl(2) [GGra2].

At this point we have exhaustively studied several examples, with varying outcomes as to the existence of
obstructions to quantization. I summarize these examples below.

M Type b Type Representations Obstruction?

R2n noncompact h(2n) nilpotent infinite-dimensional Yes

S2 compact su(2) simple finite-dimensional Yes

T2 compact t infinite-dimensional infinite-dimensional No

T∗S1 noncompact e(2) solvable infinite-dimensional Yes

T∗R+ noncompact a(1) solvable infinite-dimensional No

N± noncompact sl(2) simple infinite-dimensional No

Table 1: Summary of known examples.

There is no obvious pattern. Moreover, our treatment of these examples relied heavily on a detailed knowl-
edge of the representations of the relevant basic algebras, and involved complex (and often computer-aided)
calculations. To obtain general results on the occurrence of obstructions, it is clear that we need to suppress the
representational aspects, and focus instead on the Lie and Poisson structures of basic algebras and the polynomial
algebras they generate.

The first key results in this direction were due to Avez [Av1] and Ginzburg and Montgomery [GiM]. Inspired
by their work, J. Grabowski, H. Grundling, and I were able to produce several no-go results for polynomial
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quantizations. Letb be afinite-dimensionalbasic algebra of observables. We broke the analysis up into four
cases, depending upon whetherb (or equivalentlyM) is compact and its representations are finite-dimensional.
While space does not permit me to elaborate on the proofs of the following results, I remark that they rely to some
extent on the work of Atkin [At] and Grabowski [Gra1, Gra2] on Poisson algebras. Furthermore, in §C.II I sketch
a proof (of Theorem 9), which is fairly representative of the techniques involved here.

(i) M Compact, Finite-dimensional Representations.The main result is [GGG]:

Theorem 3 Let b be a finite-dimensional basic algebra on a compact symplectic manifoldM . There exists
no nontrivial finite-dimensional Lie representation ofP(b). In particular, there exists no nontrivial finite-
dimensional quantization of(P(b), b).

Although not surprising on mathematical grounds, sinceP(b) is “large,” this theorem does have physical
import, as one expects the quantization of a compact phase space to yield afinite-dimensional Hilbert space.

(ii ) M Compact, Infinite-dimensional Representations.We reduce this to the previous case by observing
that a finite-dimensional basic algebra on a compact symplectic manifold must itself be compact, and hence its
irreducible representations must all be finite-dimensional. Then Theorem 3 applies, and we have [GGG]

Corollary 4 Let b be a finite-dimensional basic algebra on a compact symplectic manifoldM . There exists no
nontrivial quantization of(P(b), b).

Thus, there is an obstruction to polynomially quantizing a compact symplectic manifoldregardlessof the
dimensionality of the representation. I emphasize, however, that the finite-dimensionality ofb is crucial; as the
torus shows, Corollary 4 fails if this assumption is removed.

(iii ) M Noncompact, Finite-dimensional Representations.On physical grounds one expects a quantization of
a noncompactM , if it exists, to be infinite-dimensional. This is what we have rigorously proved in [GGru2]. The
crucial observation is:

Theorem 5 Let b be a finite-dimensional basic algebra on a noncompact symplectic manifold. Thenb has no
faithful finite-dimensional representations by Hermitian matrices.

Since by definition every quantization of(O, b) must be faithful onb, we conclude thatthere is no nontrivial
finite-dimensional quantization of(O, b) on a noncompact symplectic manifold,whereO is any Lie algebra
containingb. Combining this with Theorem 3 we can now assert—roughly speaking—that no symplectic man-
ifold with a (finite-dimensional) basic algebra has a finite-dimensional quantization.

(iv) M Noncompact, Infinite-dimensional Representations.Since it is difficult to treat this case inclusively,
we have begun by breaking it into subcases depending on the type of basic algebra. The simplest subcase to
consider is whenb is nilpotent. Then we have shown, building on the results of Wildberger [Wi] and others, that
M must be symplectomorphic to someR2n. (Note, though, thatb need not be isomorphic to h(2n).) Furthermore,
we have established the following generalization of the classical Groenewold-Van Hove theorem [GGra1].

Theorem 6 Let b be a finite-dimensional nilpotent basic algebra on a connected symplectic manifoldM . There
exists no quantization of(P(b), b).

So far we have encountered obstructions in every instance. The present case is the exception: As mentioned
previously, we have shown that there exists a polynomial quantization ofT∗R+ with the affine basic algebra a(1).
(Note that a(1) is the simplest solvable Lie algebra which is not nilpotent!) However, the behavior exhibited by
this example is not characteristic of solvable algebras, since the Euclidean algebra e(2) is also solvable yet the
quantization ofT∗S1 is obstructed.

At the other extreme, we have also begun studying semisimple basic algebras. Here again, we encounter
examples which admit polynomial quantizations [GGra2]:

Theorem 7 Let M be a nilpotent adjoint orbit in the finite-dimensional semisimple Lie algebrab. If M admitsb
as a basic algebra, then there exists a nontrivial quantization of(P(b), b).
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On the other hand, we expect that the quantizations of non-nilpotent orbits will be obstructed although we do not
yet have a proof of this.

Thus we are able to obtain obstructions to quantizing(P(b), b) in three of these cases. And in the remaining
case (viz. whenb is noncompact and the representation space is infinite-dimensional), there is no universal
obstruction. In this gross sense, then, we have solved the problem of whether obstructions to quantization exist
for polynomial quantizations.

Finally, to close the circle, it turns out that there is a technical gap in Groenewold’s original proof [Gro]. This
gap has been filled in [VH] (see also [AM]) by means of a certain functional analytic assumption. Although
“small,” this gap is nevertheless vexing, and its elimination in this manner is not entirely satisfactory. Recently
[Go6], I have managed to rigorously prove Groenewold’s theoremwithout introducing extra assumptions. In
addition, whenn = 1 I have listed the maximal quantizable Lie subalgebras of polynomial observables and
classified their quantizations. Thus the Groenewold-Van Hove problem for polynomial quantizations onR2n is
completely solved forn = 1.

(ii ) GEOMETRIC QUANTIZATION AND QUANTUM CHEMSITRY

I. Mladenov and I have been working on a project in quantum chemistry. It is an open problem to predict the
rotational spectra of even simple molecules, except in certain highly symmetric situations. For instance, while in
[LL] the low-lying energy eigenvalues of a polyatomic molecule can be computed using a recursive technique,
there is no known closed form expression for these quantities. Using geometric quantization theory, however, we
have managed to produce a such an expression for the energy eigenvalues in terms of elliptic integrals [GoMl].
We are currently working on simplifying this (complicated) result, and are investigating several special cases. In
particular, for a diatomic molecule our formula reduces to

E = h̄2

2I1

(
L + 1

2

)2

+ h̄2

2

(
1

I3
− 1

I1

)
m2,

where I1 = I2 6= I3 are the moments of inertia,L is the angular momentum quantum number, andm is the
component of the angular momentum along the molecular axis.

Our formulæ are interesting in two regards. First, instead of the usualh̄2L(L+1) term, we havēh2(L+1/2)2.
One can regard this either as a particular manifestation of the “metaplectic shift” in geometric quantization theory
or as resulting from a “curvature correction” [Wo]. (In the context of angular momentum, this shift ofh̄2/4 is
referred to as the “Langer modification” [La].) Second, they imply that there should exist a rotational rest energy
of h̄2/8I1, much like the well-known vibrational zero-point energy. This shift may or may not be physically
correct; in some instances, it gives the right answers (e.g. the vibrational rest energy), but in others it does not
(e.g. spin). So we need to examine the rotational spectra of, say, diatomic molecules for evidence of such a rest
energy.

We do not yet know if this is detectable. Determining this is likely to be difficult; in the realm of quantum
chemistry, even the existence of the vibrational rest energy is a subtle effect which can be observed only via iso-
topic displacement [Her, §IV.2]. Complicating matters are other degrees of freedom (vibrational, internal) whose
presence tend to “swamp” rotational effects in the energy spectra, as well as the fact that the phenomenological
parameters describing molecules (moments of inertia, for instance) are imprecisely known.

(iii ) THE MATHEMATICAL STRUCTURE OF CLASSICAL FIELD THEORY

The purpose of this research was to develop and exploit connections between initial value constraints and gauge
transformations in classical field theories. To a substantial degree I, along with collaborators J. Isenberg and J.
Marsden, have succeeded in this. We have shown that many different and apparently unrelated facets of field
theory can be tied together and understood in a fundamentally new way using multisymplectic techniques.

Our research program consists of four components: (A) a covariant analysis of field theories; (B) a space
+ time decomposition of the covariant formalism followed by an initial value analysis of field theories; (C) a
study of the relations between gauge symmetries and initial value constraints; and (D) the derivation of the so-
called “adjoint formalism,” which constitutes the starting point for investigations into the structure of the space of
solutions of the Euler-Lagrange equations, linearization stability, quantization, and related questions.
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This project is virtually finished. Part A has already appeared as a preprint [GIM1], and Part B will appear
this winter [GIM2]. Part C is well understood in the case of purely first class theories, but there are a number
of issues which require further study when second class constraints are present. Finally, the research for Part
D has also been completed. There have been several significant spin-offs from this work as well, including
[Go2, Go3, GoMa, MPS, MS]. When assembled, the results will appear as a research monograph of about 250
pages, which has already been accepted for publication in the M.S.R.I. series (Cambridge University Press).

Human Resources Statement

Interest in the research pursued in this grant has motivated a former graduate student in mathematics, Jason
Hanson, to collaborate with me in on topics in classical field theory. In particular, he has been working out the
details of the adjoint formalism for second order Einstein gravity. A graduate student, Bryon Kaneshige, has
begun working with me on the problem of quantizing semisimple basic algebras, and plans to do his dissertation
in this general area.
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f. Relation of Completed Work to Proposed Work:

My proposed research program is a straightforward continuation of my current NSF supported
research.
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II. Proposed Research Project:Obstructions in Quantization Theory

My proposed research project is a direct followup to my current NSF supported research on the existence of
obstructions to quantization (cf. Section C.I). The main goals of this proposal are:

• To delineate the circumstances under which such obstructions will appear, and to understand the mech-
anisms which produce them. Already substantial progress has been made: My collaborators and I have proven,
in quite general circumstances, the existence of obstructions to obtaining both finite- and infinite-dimensional
quantizations of compact phase spaces as well as finite-dimensional quantizations of noncompact phase spaces.
From a practical standpoint, determining the extent to which a quantization is internally consistent is an essential
part of the quantization program; when one pushes quantization too far all sorts of problems are known to arise.
Thus one needs to know just how far “too far” is; specifically, one needs

• To compute, when an obstruction does exist, the largest subalgebras of observables that can be consis-
tently quantized. While this can sometimes be done in specific examples, little is known in general. Once this is
accomplished, the next step is to classify all their possible quantizations. This line of investigation has brought to
light previously unknown quantizations of several classical systems, and it is important to determine their phys-
ical significance. Again, while this can often be carried out by hand in particular cases, it would be preferable

• To refine extant quantization procedures, or perhaps design new ones, which are adapted to the obstruc-
tion in the sense that they will automatically be able to quantize these largest subalgebras. Typically, standard
techniques are able to quantize only relatively “small” subalgebras of observables, and run into difficulties when
extended beyond these classes of observables. Such a quantization procedure would be of obvious value when
confronted with complicated and poorly understood classical models which need to be quantized.

• My emphasis thus far has been on quantization procedures which are “Hilbert space-based.” It is there-
fore important to determine to what extent they remain valid in other approaches, such as deformation quantiza-
tion, which employs a somewhat “looser” notion of quantization. Anecdotal evidence suggests that the obstruc-
tions encountered in the Hilbert space-based context do indeed carry over to (strict) deformation quantization as
well. A key aim is to elucidate this connection.

The proposed research is in an area of active interest to mathematicians and physicists alike. From a mathe-
matical standpoint, this research will lead to interesting structural insights into the Poisson algebras of classical
systems and their representations. Physically, it will substantially aid in clarifying the correspondence between
classical and quantum mechanics in general, and in particular will enhance our understanding of quantizations of
specific classical systems.

I will discuss each point in turn after giving the background of the problem.

Quantization has always been one of the great mysteries of mathematical physics, dating back to the begin-
nings of this century. There are at this point many ways of quantizing a classical mechanical system, including
the physicists’ original “canonical quantization” [Di] (and its modern mathematical formulations, such as geo-
metric quantization theory [Ki, Wo]), Weyl quantization [Fo], path integral quantization [GJ] and the more recent
deformation quantization [BFFLS, Ri2].

Regardless of which quantization procedure one favors, it is generally accepted—although not necessarily
well substantiated—that quantization is an ill-defined procedure, which is inherently incapable of consistently
quantizing all classical systems. While there is certainly no extant quantization procedure which works well in all
circumstances, and while there some evidence supporting this assertion, it nonetheless bears closer scrutiny.

That any specific quantization scheme has shortcomings probably reflects the fact that there is a myriad of
quantum theories, all of which have the same classical limit. How then is a quantization procedure to select the
physically correct quantum theory amongst these possibilities?

But there are deeper, underlying problems, which are for the most part independent of the particular method
of quantization employed. In this context the conventional wisdom is that it is impossible to “fully” quantize
a given classical system, in a way which is consistent with the physicists’ Schrödinger quantization ofR2n. (I
will make this somewhat nebulous statement precise below.) In other words, the assertion is that there exists
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a universal “obstruction” which implies that one must settle for something less than a complete and consistent
quantization ofanysystem. Each quantization procedure listed above exhibits this defect in specific examples.

That there are problems in quantizing even simple systems was observed very early on. One difficulty was to
identify the analogue of the multiplicative structure of the classical observables in the quantum formalism. For
instance, consider the quantization of the phase spaceR2n with canonical coordinates{qi , pi , i = 1, . . . ,n}. For
simple observables the the “product→ anti-commutator” rule works well. But for more complicated observables
(say, ones which are quartic polynomials in the positions and momenta), this rule itself becomes ambiguous and
inconsistencies arise (see [Fo, §1.1] for a discussion of these factor-ordering ambiguities). Of course this, in and
by itself, might only indicate the necessity of coming up with some subtler symmetrization rule. But attempts
to construct a quantization map also conflicted with Dirac’s “Poisson bracket→ commutator” rule. This was
implicitly acknowledged by Dirac [Di, p. 87], where he made the now famous hedge:

“The strong analogy between the quantum P.B.. . . and the classical P.B.. . . leads us to make the
assumption that the quantum P.B.s, or at any rate the simpler ones of them, have the same values as
the corresponding classical P.B.s.”

In any case, as a practical matter, one was forced to limit the quantization to relatively ‘small’ subalgebras of
observables which could be handled without ambiguity (e.g., polynomials which are at most quadratic in thepi

and theqi , or observables which are at most affine functions of the momenta).
Then, in 1946, Groenewold [Gro] showed that the search for an “acceptable” quantization map was futile.

His “no-go” theorem states that one cannot consistently quantize all polynomials in theqi andpi onR2n, subject
to the requirement that theqi and pi be irreducibly represented. Subsequently Van Hove [VH] refined Groene-
wold’s result. (For discussions of these and related results, see [AM, Ch1, Fo, Go1, Go6, GS, Jo] and references
contained therein.) Thus it isin principle impossible to quantize – byanymeans – every polynomial observable
onR2n in a way consistent with Schrödinger quantization (which, according to the Stone-Von Neumann theorem,
is the import of the irreducibility requirement on thepi andqi ). At most, one can consistently quantize certain
subalgebras of observables such as those mentioned in the preceding paragraph.

Examination of specific quantization procedures provides corroboration for Groenewold’s result. Consider
for instance geometric quantization theory, in which context the only observables which are quantizablea priori
are those whose Hamiltonian vector fields preserve a given polarization [Bl1, Wo]. While this does not preclude
the possibility of quantizing more general observables, attempts to quantize observables outside this class usually
result in inconsistencies. Inall instances, the set ofa priori quantizable observables forms a proper Lie sub-
algebra of the Poisson algebra of the given symplectic manifold. This observation leads one to expect that
Groenewold-Van Hove obstructions to quantization should be ubiquitous.

The principal question I wish to investigate is whether this is actually true: Under what conditions do no-go
theorems hold for general symplectic manifolds? For nearly half a century Groenewold’s theorem was essen-
tially the only result along these lines (possibly because the mathematical tools with which to tackle this problem
weren’t available). Then, during the past few years, H. Grundling, C. Hurst, and I proved that there are obstruc-
tions to quantizing both the sphereS2 [GGH] and the cylinderT∗S1 [GGru1]. At the same time, I showed that
no-go theorems arenot universal: There are no obstructions to quantizing either the torusT2 [Go4] or T∗R+
[GGra1].1 An important point, therefore, is to understand the mechanisms which are responsible for these diver-
gent outcomes.

With several examples now in hand, it is possible to probe deeper and try to understand the underlying
reasons for the existence (or nonexistence) of obstructions to quantization. To set the stage for this, I intro-
duce some terminology. LetM be a connected symplectic manifold, with Poisson algebra(C∞(M), {·, ·}), where
{·, ·} is the Poisson bracket.

Definition 1 Let O be a Lie subalgebra ofC∞(M). A prequantizationof O is a linear mapQ from O to the
linear space Op(D) of symmetric operators which preserve a fixed dense domainD in some separable Hilbert
spaceH, such that for allf, g ∈ O,

1 These results are described in “Results from Prior NSF Research,” §C.I.
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(Q1) Q({ f, g}) = i
h̄ [Q( f ),Q(g)],

(Q2) if O contains the constant function 1, thenQ(1) = I , and

(Q3) if the Hamiltonian vector fieldX f of f is complete, thenQ( f ) is essentially self-adjoint onD.

If O = C∞(M), the prequantization is said to befull. Q is nontrivial provided codim kerQ > 1.

Prequantizations in this broad sense are usually easy to construct [Ch3, Ur]. Van Hove was the first to pre-
quantizeC∞(R2n) [VH]. Notice that no assumptions are made regarding the multiplicative structure onO vis-à-
visQ.

Unfortunately, prequantization representations of the entire Poisson algebra of a symplectic manifold tend
to be flawed physically. For instance, the Van Hove prequantization ofR2n is not unitarily equivalent to the
Schr̈odinger representation of the Heisenberg group H(2n) [Bl1], while the Kostant-Souriau prequantizations of
S2 do not reproduce the standard spin representations of SU(2) [Wo]. In both examples the prequantization
Hilbert spaces are ‘too big.’ The main problem is how to remedy this, in other words, how to modify the notion
of a prequantization so as to yield a genuinequantization.

Several notions of what constitutes a quantization map can be found in the literature. Some versions (e.g, [Ki,
Is]) take a certain “basic algebra”b ⊂ C∞(M) of observables and then define a quantization as a prequantization
which is irreducible onb. For example whenM = R2n, b is the Heisenberg algebra h(2n), and whenM = S2,
one would takeb = su(2).

A different definition of a quantization is a prequantizationQ which satisfies a “Von Neumann rule,” that is,
some given relation between the multiplicative structure ofC∞(M) and operator multiplication onH. There are
many different types of such rules [KLZ, KS, VN], the simplest being of the form:

Q(ϕ ◦ f ) = ϕ(Q( f ))

for some distinguished observablesf ∈ C∞(M) and smooth functionsϕ ∈ C∞(R).
A third type of quantization is obtained by polarizing a prequantization representation [Bl1, Wo]. In the

context of Poisson algebras, a ‘polarization’ is a maximal commuting Lie subalgebraA (of the complexification)
of C∞(M). Then one requires for the quantization mapQ that the imageQ(A) be maximally commuting as
operators in an appropriate technical sense.

These three approaches to a quantization map are not independent; in fact, there exist subtle connections
between them which are not well understood. But at the core of each approach is the imposition—in some
form—of an irreducibility requirement which is used to ‘cut down’ the prequantization representation. Since this
is most apparent in the first approach, I will concentrate henceforth on it.

The first order of business is to determine exactly what constitutes a “basic algebra” of observables. After
much trial and error, the following definition seems to be the most appropriate.

Definition 2 A basic algebra of observablesb is a Lie subalgebra ofC∞(M) such that:

(B1) b is finitely generated,

(B2) the Hamiltonian vector fieldsX f , f ∈ b, are complete,

(B3) b is transitive and separating, and

(B4) b is a minimal Lie algebra satisfying these requirements.

I briefly elaborate on this definition; a more detailed discussion can be found in [Go5]. First, it is natural
to require that a basic algebra be finite-dimensional, but this turns out to be overly restrictive. For example,
in [GGG] it is shown that the torus has no finite-dimensional basic algebras. The obvious choice for a basic
algebra onT2 = R2/Z2 is the Lie algebrat of trigonometric polynomials of mean zero [Go4], which is of course
infinite-dimensional. However, note thatt is generated by the finite set

{sin 2πx, cos 2πx, sin 2πy, cos 2πy},
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so that one still has a finite number of “basic observables” with which to make measurements. I therefore do not
demand thatb be finite-dimensional, and instead merely require (B1).

The completeness condition (B2) guarantees that a basic observable generates a one-parameter group of
canonical transformations. In view of (Q3), it is the classical analogue of the requirement that an operator repre-
senting a physically observable quantity should be essentially self-adjoint, whence it generates a one-parameter
group of unitary transformations.

Next consider the transitivity requirement in (B3), which means that{X f (m) | f ∈ b} spansTmM at every
point. Whenb is finite-dimensional, it together with (B2) enable one to integrateb to a transitive action of the
simply connected groupB with Lie algebrab on M , whenceM is a Hamiltonian homogeneous space forB. The
appeal of transitivity is that it is a classical version of an irreducible representation: Using the transitive action of
B, one can obtain any classical state from any other one, in direct analogy with the fact that every nonzero vector
in a Hilbert spaceH is cyclic for an irreducible unitary representation ofB on H. Furthermore, transitiv-
ity implies the following nondegeneracy condition, which is reminiscent of the quantum mechanical notion of
“operator irreducibility”:{ f, g} = 0 for all f ∈ b impliesg is constant.

As part of (B3) I also require thatb globally separate classical states. This ensures thatb accurately reflects
the topology ofM [Ve]. Without it, e.g., the Lie algebrat defined above could equally well live on eitherR2 or T2

(or even “halfway between,” onT∗S1); measurements usingt could not distinguish amongst these phase spaces.
Finally, the minimality condition (B4) is crucial: The quantization of a pair(O, b) with b nonminimal in this

sense can lead to physically incorrect results. For instance, without this condition it would often be possible to
find full quantizations; indeed, it may happen that a prequantization representation is itself irreducible [VH, Ch3].

There is no guarantee that a given symplectic manifold will carry a basic algebra. Indeed, the next proposition
shows that those phase spaces which admit basic algebras form a quite restricted class [Go5].

Proposition 8 If a connected symplectic manifoldM admits a finite-dimensional basic algebrab, thenM is a
coadjoint orbit inb∗.

Despite this,M may still carryinfinite-dimensional basic algebras, as happens forT2. Not much is known
regarding these, cf. [Is, §4.8.4] for further discussion.

With this definition of a basic set, I am now ready to state what I mean by “quantization” [Go5]. LetO be a
Lie subalgebra ofC∞(M), and suppose thatb ⊂ O is a basic algebra of observables. Two eminently reasonable
requirements to place upon a quantization are irreducibility and integrability [BR, Fl, Is, Ki].

Definition 3 A quantizationof the pair(O, b) is a prequantizationQ of O on Op(D) satisfying

(Q4) Q ¹ b is irreducible,

(Q5) D contains a dense set of separately analytic vectors for a Lie generating set ofQ(b), and

(Q6) Q ¹ b is faithful.

Irreducibility is of course one of the pillars of the quantum theory, and we have already seen the necessity
of requiring that a quantization map representb irreducibly. Regarding integrability, first consider the case when
basic algebra is finite-dimensional. Then it is natural to demand that the Lie algebra representationQ(b) be in-
tegrable to a unitary representation ofB. That integrability will follow from the technical condition (Q5) is a
theorem of Flato et al., cf. [Fl] and [BR, Ch. 11]. (There do exist nonintegrable representations, e.g. of the
Heisenberg algebra [RS, p. 275]; however, none of them seem to have physical significance. (Q5) thus serves to
eliminate these “spurious” representations.) If it happens thatb is infinite-dimensional, then there need not exist
a Lie group havingb as its Lie algebra. Even if such a Lie group existed, integrability is far from automatic, and
technical difficulties abound [ARS]. Thus I will not insist that a quantization be integrable in general. On the
other hand, the analyticity requirement in (Q5) makes sense under all circumstances, and does guarantee integra-
bility whenb is finite-dimensional, so I adopt it in lieu of integrability.
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Finally, the faithfulness requirement (Q6) seems reasonable in that a classical observable can hardly be re-
garded as “basic” in a physical sense if it is in the kernel of a quantization map. In this case, it cannot be obtained
in any classical limit from a quantum theory.

While considerable effort has gone into fine tuning these definitions, there are other requirements that one
might wish to include. (A detailed discussion can be found in [Go5].) For example, one could strengthen the
definition of a basic algebra by replacing (B3) by the condition that the Poisson algebra generated byb be dense
in C∞(M). One could also modify the axioms for a quantization, for instance by adopting Souriau’s requirement
that bounded classical observables should quantize to operators with bounded spectra [Zi]. Such changes could
have profound consequences. In particular, if one modified (B3) as indicated, then both a(1) onT∗R+ and sl(2) on
N± would be eliminated from the ranks of basic algebras. On the other hand, Proposition 8 shows that the given
definition of basic algebra is already quite restrictive. I have framed the definitions so as to strike a compromise
between these competing tendencies, while keeping physical considerations at the forefront. With regard to the
latter, I emphasize that the definitions above are closely tailored to reflect whatphysicistsmean when they speak of
“basic observables” and “quantization.” In particular, there are many notions of quantization in the mathematical
literature (in connection with quantum groups, spinc structures and Riemann-Roch theorems, deformations of
associative algebras, etc.) which, however, are often only vaguely related to “quantization” in the physical sense.
Thus, from a mathematical standpoint, I take “quantization” to mean basically the process of obtaining certain
types of representations of (Lie subalgebras of) Poisson algebras.

I am for the most part interested in the existence of polynomial quantizations, i.e., quantizations of(P(b), b)
whereP(b) is the Poisson algebra of polynomials generated byb. Let Pk(b) denote the subspace of polynomials
of minimal degree at mostk. (Since P(b) is not necessarily freely generated byb as an associative algebra,
the notion of “degree” may not be well-defined, but that of “minimal degree” is.) In the cases when degree
does make sense, letPk(b) denote the subspace of homogeneous polynomials of degreek. I then also introduce
P(k)(b) = +l≥k Pl (b). Whenb is fixed in context, I simply writeP = P(b), etc.

Table 2 following provides a summary of what is known about polynomial quantizations in general (cf. §C.I).
For the time being, assume thatb is finite-dimensional.

Finite-dimensional quantizations Infinite-dimensional quantizations

M compact No No

M noncompact No Sometimes, but not always

Table 2: Do quantizations of(P(b), b) exist?

We are thus left with trying to understand the noncompact, infinite-dimensional case, which is naturally the
most interesting and difficult one. Here one has little control over either the types of basic algebras that can
appear (in examples they range from nilpotent to simple), the structure of the polynomial algebras they generate
(the codimension of the commutator ideal{P, P} can be at least 0,1, or∞), or their representations. It is instruc-
tive to compare this with what happens whenM is compact: Thenb is compact semisimple and codim{P, P} = 1
[GGG]. Nonetheless, as discussed in §C.I, we are able to prove a no-go theorem whenb is nilpotent, and to con-
struct counterexamples when it is solvable or semisimple.

Now observe that four of our examples fall into this category:R2n, T∗S1, T∗R+, and N±. The first two
exhibit obstructions, while the last two do not. Comparing the behavior of these examples, as well as that ofS2,
which is also obstructed, I attempt to extract the key features which govern the appearance of obstructions to a
polynomial quantization. Of course, any conclusions that can be drawn at this point are necessarily tentative, due
to the paucity of examples against which to test them. Nonetheless, some interesting observations can be made,
which may prove helpful in subsequent investigations.

I think the key lies in an examination of how the polynomial quantizations ofT∗R+ and N± come about,
since they relies upon some structural properties ofP which are not present in our other examples. Therefore I
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now discussT∗R+ in detail (N± works similarly). Recall that the “affine” basic algebra onT∗R+ is

a(1) = span{pq,q2}.
Upon writingX = pq,Y = q2, the bracket relation becomes{X,Y} = 2Y. The polynomial algebraP = R[X,Y]
is freely generated byb, and has the crucial feature that for eachk ≥ 0, the subspacesPk aread-invariant, i.e.,

{P1, Pk} ⊂ Pk. (2)

(Note thatP1 = a(1)). Because of this{Pk, Pl } ⊂ Pk+l , whence eachP(k) is a Lie ideal. We thus have the
semidirect sum decomposition

P = P1n P(2). (3)

SinceP(2) is a Lie ideal, I can obtain a quantizationQ of all of P simply by finding an appropriate representation
of P1 = R⊕ P1 and settingQ(P(2)) = {0}!

The simply connected covering group of a(1) is isomorphic to the group A+(1) = R o R+ of orientation-
preserving affine transformations of the line (hence the terminology). Since A+(1) is a semidirect product its
unitary representations can be generated by induction; I compute(

U±(ν, λ)ψ
)
(q) = e±i νq2/h̄ψ(λq)

on L2(R+,dq/q). These two representations (one for each choice of sign) are irreducible and inequivalent;
moreover, they are the only irreducible infinite-dimensional unitary ones. Writingπ± = −i h̄ dU± I get the
quantization(s) of a(1) onL2(R+,dq/q):

π±(pq) = −i h̄q
d

dq
, π±(q2) = ±q2.

Extend these toP1 by demanding thatπ±(1) = I , and setQ± = π± ⊕ 0 (cf. (3)).2 These are evidently
prequantizations ofP, by construction (Q4) and (Q5) are satisfied, andQ± ¹ P1 = π± are clearly faithful. Thus
Q± are the required quantization(s) of(P, P1).

What makes this example work? It is clear that this polynomial quantization exists because one cannot de-
crease degreein P by taking Poisson brackets. (That is (2) holds, as opposed to merely{P1, Pk} ⊂ Pk.) On the
other hand, a careful look at the derivations of the obstructions in [Go6, GGru1, GGH] forR2n, T∗S1, andS2,
respectively, shows that the controlling factor is apparently that in these examples onecandecrease degree inP
by taking Poisson brackets.

There are two—and only two—circumstances under which taking Poisson brackets inP(b) can decrease
degree:3

(D1) 1∈ {P(b), P(b)}, and

(D2) There existnonzeroCasimirs in the symmetric algebraS(b) overb.4

Condition (D2) implies thatP(b) is not freely generated byb as an associative algebra. Specifically, (D2) holds
wheneverb is semisimple and has a nonzero compact ideal. At the other extreme, whenb is nilpotent, (D1) holds.
Indeed, a nilpotent algebra has a center, and (B3) implies that this center consists of constants. An examination
of the descending central series forb then shows that 1∈ {b, b}. In the examples,R2n satisfies (D1) but not (D2),

2 There are also quantizations for whichQ±(P(2)) 6= {0}, cf. [GGra1].
3 A priori, a third circumstance would be if 1∈ b. Using the minimality condition (B4), it is not difficult to prove that then 1∈ {b,b}, so

this is actually a subcase of (D1).
4 A Casimir is an element of the Lie center ofS(b) which has no constant term. IfC is a Casimir, then by (B3) its projection toP(b)

is a constant. Thus this condition means that this constant must be nonzero; in other words, when viewed as a function onM ⊂ b∗, C is
nonvanishing.
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S2 satisfies (D2) but not (D1), andT∗S1 satisfies both. On the other hand, bothT∗R+ and N± satisfy neither
condition.

On the basis of this “anecdotal” evidence, I propose that a general Groenewold-Van Hove theorem takes the
form:

Conjecture 1 Let M be a symplectic manifold with a finite-dimensional basic algebrab. Suppose that the poly-
nomial algebraP(b) satisfies either(D1) or (D2). Then there is no nontrivial quantization of(P(b), b).

Indeed, is possible to directly verify this conjecture under certain circumstances.

Theorem 9 Conjecture1 is valid when eitherM is compact or the representation space is finite-dimensional.

I sketch the proof so as to give a flavor of the techniques involved, which are fairly representative. Restrict
attention to the case of finite-dimensional representations; the general case can easily be reduced to this. So
supposeQ is a quantization ofP(b) on a finite-dimensional Hilbert space, whence kerQ has finite codimension
in P(b).

As Q(b) consists of hermitian matrices,Q is completely reducible. Since by (Q6)Q is also faithful,b is
reductive. As a consequence,b splits as the Lie algebra direct sumz ⊕ s, wherez is the center ofb ands is
semisimple. Now transitivity implies that any function which Poisson commutes with every element ofb must
be a constant, so thatz ⊆ R. But if equality holds thens would be a separating transitive subalgebra, thereby
violating (B4). Thusz = {0} andb is semisimple.

I need the following result, which is proven in [GGG].

Lemma 1 If L is a finite-codimensional Lie ideal of an infinite-dimensional Poisson algebraP with identity, then
either L contains the commutator ideal{P,P} or there is a maximal finite-codimensional associative idealJ of
P such that{P,P} ⊆ J.

Now apply this Lemma toL = kerQ ⊂ P(b). First suppose that{P(b), P(b)} ⊆ L. Then semisimplicity
givesb = {b, b} ⊂ L, and soQ ¹ b = 0, which contradicts (Q6).

Thus there must exist a maximal finite-codimensional associative idealJ in P(b) with {P(b), P(b)} ⊆ J. If
ρ is the projectionS(b) → P(b), thenK = ρ−1(J) is a maximal finite-codimensional associative ideal inS(b)
with {S(b), S(b)} ⊆ K . Sinceb = {b, b} ⊂ {S(b), S(b)} ⊆ K , and since 16∈ K (as J, and thusK is proper), it
follows thatK is the associative ideal generated byb.

If (D1) holds then 1∈ J, which cannot be. So suppose (D2) holds, so that there is a nonzero Casimir
C ∈ S(b). Transitivity implies thatρ(C) = c for some constantc 6= 0. By the definition of a Casimir and the
above remarksC ∈ K . ThenC − c 6∈ K , for otherwisec ∈ K , which is at odds with the properness ofK . But
this contradicts the fact thatC − c ∈ kerρ ⊂ K , and the theorem is proven.

Thus Conjecture 1 is consistent with the results listed in Table 2. Furthermore, by generalizing the construction
of the polynomial quantization onT∗R+, one sees that the hypotheses of Conjecture 1 are certainlynecessary.

Theorem 10 Suppose that the polynomial algebraP(b) satisfies neither condition(D1) nor (D2). Then any
nontrivial quantization ofb extends to a quantization of(P(b), b).

Lastly, I observe that the finite-dimensionality assumption onb in Conjecture 1 is necessary as well: The
symmetric algebraS(t) on T2 certainly contains Casimirs, but the conjecture is violated.

Establishing the validity of Conjecture 1 is the main goal of this proposal.Theorems 9 and 10 strongly suggest
that the conjecture is correct (and, if not, then surely not too far off the mark). Still, completing its proof—that
is, whenM is noncompact and the quantizations are infinite-dimensional—seems to be a difficult problem. In
particular, the proof of Theorem 9 (as well as that of Theorem 3) relies on Lemma 1, which in turn is predicated
on the finite-codimensionality of kerQ. As there is no apparent reason why this should be so under the stated
circumstances, different techniques will be required to handle this case.

For instance, here is an “algebraic no-go theorem” which does not require that the codimension of kerQ be
finite [GGra1]:
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Theorem 11 LetP be a unital Poisson subalgebra ofC∞(M,C). If as a Lie algebraP is not commutative, it
cannot be realized as an associative algebra with the commutator bracket.

To apply this result to polynomial quantizations, suppose thatQ : P(b) → Op(D) were a quantization of
(P(b), b) on some invariant dense domainD in a Hilbert space. By requiringQ to be complex linear, we may
regard it as a quantization ofP = P(b)C. DefineA ⊂ Op(D) to be the associative algebra generated overC by
{Q( f ) | f ∈ b} together withI (if 1 6∈ b). If it can be shown that any suchQ must be a Lie algebra isomorphism
of P(b) ontoA, then Theorem 11 will yield a contradiction. One can use this result to give an alternate proof of
Groenewold’s theorem; in fact, it is the key ingredient in the proof of Theorem 6 [GGra1].

It may be necessary to work through a few more examples before one is able to gain sufficient insight into
this problem. One example worth studying are the various coadjoint orbits for the symplectic algebra sp(2n,R).
Another would be arbitrary cotangent bundles (although thenb will typically be infinite-dimensional). As well,
it would be useful to consider basic algebras of a more general type than the ones we have encountered thus far
(which were all either solvable or semisimple). I have also restricted consideration to polynomial algebras to a
large extent, but there are other subalgebrasO of C∞(M) which are of interest (e.g., onR2n, those functions
which are constant outside some compact set [Ch3]).

Of our six examples, the torus is clearly much different than the others. Because the basic algebrat is infinite-
dimensional, the irreducibility requirement (Q4) loses much of its force—so much so that it precludes the exis-
tence of an obstruction. So it seems equally reasonable to propose

Conjecture 2 Let M be a symplectic manifold andb a basic algebra withP1(b) dense inC∞(M). Then there
exists a nontrivial quantization of(C∞(M), b).

A necessary condition forQ to be a full quantization of(C∞(M), b) is thatQ representC∞(M) itself irre-
ducibly. It turns out [Ch2, Tu] that this is so for all Kostant-Souriau prequantizations5; thus it is natural to consider
the case whenM is prequantizable in this sense. In fact, in this context [Tu] gives even more:

Proposition 12 Let M be an integral symplectic manifold,L a Kostant-Souriau prequantization line bundle over
M andQL the corresponding prequantization map. Letb be a basic algebra withP1(b) dense inC∞(M). Then
QL representsb irreducibly.

Let Dc = 0(L)c, the compactly supported sections ofL. By constructionQL : C∞(M)→ Op(Dc) satisfies
(Q1)–(Q3) and (Q6). This proposition guarantees thatQL satisfies (Q4) as well. Thus to obtain a full quantization
it remains to verify (Q5) on some appropriately extended domainD; unfortunately, it does not seem possible to
do this except in specific instances. Noting that the quantization ofT2 given in §C.I is actually a Kostant-
Souriau prequantization with Chern numberN = 1 [Go4], a first test would be to understand what happens for
the Kostant-Souriau prequantizations of

(
C∞(T2), t

)
with N 6= 1. Still, Proposition 12 does provide a certain

amount of support for Conjecture 2.
The “gray area” between Conjectures 1 and 2 consists of symplectic manifolds with basic algebrasb for which

P1(b) is infinite-dimensional, yet not dense inC∞(M). Perhaps the infinite-dimensionality ofb alone is enough
to guarantee the existence of a full quantization? In any event, it might be fruitful to search for more examples of
full quantizations.

Setting aside the question of the existence of obstructions, I now suppose that there is an obstruction to, say,
a polynomial quantization, so that it is impossible to consistently quantize all ofP(b). The question then is:
What are the largest Lie subalgebrasO ⊂ P(b) containing the given basic algebrab such that(O, b) can be
quantized?Modulo technical issues, given a representationQ of b on a Hilbert spaceH, one ought to be able to
induce a representation of its Lie normalizern(b) in P(b) onH. (Indeed, the structure(n(b), b) brings to mind
an infinitesimal version of a Mackey system of imprimitivity [Ma].) Thus it seems reasonable to assert:

Conjecture 3 Let b be a finite-dimensional basic algebra. Then every quantization ofb can be extended to a
quantization of(n(b), b).

5 However, there are other prequantizations which do not representC∞(M) irreducibly; for instance, the prequantization of Avez [Av2,
Ch3].
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This is in exact agreement with the examples. In particular, forR2n one hasn(P1) = P2, and forS2 one
computesn(P1) = P1. Moreover, in both cases we have shown that these normalizers are in fact maximal
quantizable Lie subalgebras of polynomials [Go6, GGH]. It is therefore tempting to conjecture that no nontrivial
quantization of(n(b), b) can be extended beyondn(b) [GGT], which is indeed the case for bothR2n and S2.
If true, this would also point where to look for a Groenewold-Van Hove contradiction, viz. just outside the
normalizer. Alas, this is false: For the cylindern(P1) = P1. But in [GGru1] we showed that any representation
Q(P1) can be extended, in infinitely many ways, to quantizations of(L1, P1), whereL1 is the Lie subalgebra of
polynomials which are affine in the (angular) momentum. It is not clear how one could “discover” this subalgebra
given just the basic algebra e(2) (but see below). An outstanding problem is therefore to determine the largest
Lie subalgebras of quantizable observables. Unfortunately, this is extremely difficult in general. Just classifying
maximal Lie subalgebras of polynomials is daunting; for instance, this problem has not been solved even forR2n

whenn > 1 [Go6].
This is reminiscent of the situation in geometric quantization with respect to polarizations. Suppose thatA is a

polarization ofC∞(M,C). Then one knows that one can consistently quantize those observables which preserve
A, i.e., which belong to the real part ofn(A) [Bl1, Wo]. In this way one obtains a “lower bound” on the set
of quantizable functions for a given polarization. If one takes the antiholomorphic polarization onS2, then it
turns out that the set ofa priori quantizable functions obtained in this manner is preciselyP1. But it may happen
that the real part ofn(A) is too small, as forR2n with the antiholomorphic polarization. In this case the real
part ofn(A) is only a proper subalgebra ofP2, and in particular is not maximal. This reflects the fact that the
metaplectic representation cannot be derived by polarizing a prequantization. Furthermore, in the case of the
torus, introducing a polarization will drastically cut down the set ofa priori quantizable functions, which is at
odds with the existence of a full quantization of this space. So geometric quantization is not a reliable guide
insofar as computing maximal quantizable Lie subalgebras of observables. On the other hand, the subalgebraL1

is just the normalizer of the vertical polarization{h(θ)} on T∗S1, so this subalgebra finds a natural interpretation
in the context of polarizations. Clearly, there must be some connection between polarizations and basic algebras
that awaits elucidation.

Assuming that one can in fact determine the largest Lie algebras of quantizable observables, the next problem
is to classify all their possible quantizations.Again, this can only be done on a case-by-case basis at present.
However, some interesting phenomena already have come to light in those examples which have been analyzed
in detail. For instance, ifC denotes the Lie subalgebra of polynomials onR2n which are at most affine in the
momenta, then it turns out [Go6] that(C, P1) can be consistently quantized, and moreover thatanyquantization
thereof is unitarily equivalent toQη defined by

Qη
(

n∑
i=1

f i(q)pi + g(q)

)
= −i h̄

n∑
i=1

(
f i(q)

∂

∂qi
+
[

1

2
+ iη

]
∂ f i(q)

∂qi

)
+ g(q), (4)

where f i , g are polynomials andη ∈ R.Whenη = 0, this is the familiar “position” or “coordinate representation.”
But for η 6= 0 theQη are genuinely new quantizations, and it evidently is of interest to see if they have any
observable consequences or physical applications. The significance of the parameterη is explored in [ADT, Hen].
There it is shown that while the quantizationsQη andQη′ are unitarily inequivalent ifη 6= η′, they are related
by a nonlinear norm-preserving isomorphism. Similarly the physical significance of the full quantization (1) of
C∞(T2) remains unclear; it is interesting that this quantization appears (in a completely different context) in solid
state physics, where it is known as the “kq-representation” [Za].

Apropos the remarks above, it would clearly be worthwhile, presuming that it is somehow possible to predict
the maximal set(s) of quantizable observablesa priori, to see whether one can use this knowledge to refine
geometric quantization theory, or todevelop a new quantization procedure, which is adapted to the Groenewold-
Van Hove obstruction in that it will automatically be able to quantize this maximal set of observables.In this
regard, I note that many of the quantizations we have computed (such as theQη of (C, P1) given by (4) with
η 6= 0, or the metaplectic quantization of(P2, P1), both onR2n) cannot be derived using geometric quantization
theory. Again, a first step here would be to recast the Groenewold-Van Hove results in terms of polarizations. Such
a quantization procedure would be of obvious value when one is confronted with complicated classical systems,
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such as homogeneous cosmological models [GI], whose quantum analogues are at best poorly understood.
Here I have focused on the quantization of symplectic manifolds. It is natural to wonder to what extent these

results will carry over to Poisson manifolds, or even to abstract Poisson algebras.

My approach is designed so as to obtain results which are independent of the particular quantization scheme
employed, as long as it is Hilbert-space based. Therefore it is interesting that some of the go and no-go results
described here have direct analogues in deformation quantization theory, since this theory was developed, at least
in part, to avoid the use of Hilbert spaces altogether [BFFLS]. So for example [Ri1], the no-go result forS2

is mirrored by the fact that there are no strict SU(2)-invariant deformation quantizations ofC∞(S2), while the
go theorem forT2 has as a counterpart the result that there do exist strict deformation quantizations of the torus.
Since every symplectic manifold admits a (formal) deformation quantization [Ko], it is sometimes asserted that the
existence of Groenewold-Van Hove obstructions necessitates a weakening of the Poisson bracket→ commutator
rule (by insisting that it hold only to order̄h). This is far from clear, however, for two reasons. First, this very
fact indicates that in general a deformation quantization is not a “quantization” in any true physical sense, since
certainly there are symplectic manifolds which cannot be recovered in the limit ash̄ → 0 from any quantum
system. What is probably required in this context is not merely a formal deformation quantization, but rather an
appropriately invariant strict deformation quantization [Ri1, Ri3]; see also [Fr]. Second, as the observations above
indicate, weakening the Poisson bracket→ commutator rule may not suffice to remove the obstructions. There
are undoubtedly important things to be learned by getting to the heart of this analogy.

**************************************

Two colleagues will be collaborating with me on my proposed research project: Prof. Janusz Grabowski
(Mathematics Institute, University of Warsaw, Warsaw, Poland), an expert in the field of Poisson algebras, and
Prof. Hendrik Grundling (Pure Mathematics, University of New South Wales, Sydney, Australia), a mathematical
physicist specializing in quantum field theory and functional analysis. Both have collaborated with me in the past
on my NSF-sponsored research.
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