A. Project Summary

Although the physical world is quantum mechanical in nature, our perceptions of
it are rooted in classical mechanics. Thus one is often confronted with the problem
of constructing a quantum formulation of a system from a knowledge of a classical
approximation to it. This process is called “quantization,” and over the years many
different quantization schemes have been developed.

Unfortunately, quantization is not a straightforward proposition. The main diffi-
culty stems from the discovery, over fifty years ago, by Groenewold and Van Hove of
an “obstruction” to quantization. Their “no-go theorem” asserts ithatrinciple it is
impossible to consistently quantize every classical observable on the phase space of a
freely moving particle in a physically meaningful way, regardless of which quantiza-
tion procedure is employed. Over the past few years, the principal investigator and his
collaborators proved that similar results hold for a wide variety of phase spaces. But
no-go theorems are not universally valid; the principal investigator has recently found
several phase spaces which admit consistent quantizations.

The main goals of this proposal are:

(i) To delineate the circumstances under which such obstructions will appear,
and to understand the mechanisms which produce them. Already substantial progress
has been made: the principal investigator and his collaborators have proven, in quite
general circumstances, the existence of obstructions to obtaining both finite- and infinite-
dimensional quantizations of compact phase spaces as well as finite-dimensional quan-
tizations of noncompact phase spaces.

(ii) To compute, when an obstruction does exist, the largest subalgebras of ob-
servables that can be consistently quantized along with all their possible quantizations.
While this can sometimes be done in specific examples, little is known in general.
Moreover, this line of investigation has brought to light previously unknown quan-
tizations of various physical systems, and it is important to determine their physical
significance.

(iii) To refine extant quantization procedures, or perhaps design new ones,
which are adapted to the obstruction in the sense that they will automatically be able
to quantize these subalgebras. Typically, standard techniques are able to quantize only
relatively “small” subalgebras of observables.

(iv) The above results are valid for quantization procedures which are “Hilbert
space-based.” It is therefore important to determine to what extent they remain valid
in other approaches, such as deformation quantization, which employs a somewhat
“looser” notion of quantization. Anecdotal evidence suggests that the obstructions
encountered in the Hilbert space-based context do indeed carry over to deformation
guantization as well. A key aim of the proposed research is to elucidate this connection.

The proposed research is in an area of active interest to mathematicians and physi-
cists alike. From a mathematical standpoint, this research will lead to interesting struc-
tural insights into the Poisson algebras of classical systems and their representations.
Physically, this research will substantially aid in clarifying the correspondence between
classical and quantum mechanics in general, and in particular will enhance our under-
standing of quantizations of specific classical systems.
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My previous NSF-funded research consisted mainly of a study of obstructions in quantization theory.
| also continued earlier work on analyzing the mathematical structure of classical field theory, and initiated a proj-
ect applying geometric quantization to quantum chemistry. | briefly summarize the results from each component
in turn. References cited below are to the list in Section D.

(i) OBSTRUCTIONS IN QUANTIZATION THEORY

In 1946 H. Groenewold and in 1951 L. van Hove proved theorems to the effect that it is impossible to quantize the
Poisson algebra of polynomials &?" in such a way that the Heisenberg subalgebrah¢@nsisting of linear
polynomials is irreducibly represented [Gro, VH]. This result has led people to conjecture, roughly speaking,
thatit is impossible to consistently quantize the entire Poisson algebra of a symplectic manifold subject to an
irreducibility requirementl refer the reader to Section C.II following for the background of this problem, as well

as a more complete discussion of the issues involved here.

My research has been concerned with understanding the origins of Groenewold-Van Hove type obstructions
as well as delineating the circumstances under which they will appear. The first goal is to correctly set up the
problem, which involves defining what is meant by a “basic algebra of observables” (analoggfs)torhR?")
which is to be irreducibly represented, as well as giving a precise meaning to the notion of “quantization.” All this
has been satisfactorily accomplished [Go5]. The precise definitions are somewhat technical, and so are deferred
until 8C.II; here | shall use these terms intuitively. Sotdbe a basic algebra of observables on a symplectic
manifold M, and letO be a Lie subalgebra @2°°(M) containingb. A quantizationof the pair(O, b) is a Lie
representation o on a Hilbert space which (amongst other things) is irreducible when restrictedTibe
Groenewold-Van Hove probleis to determine whethap can be consistently quantized and, if not, to find the
largest Lie subalgebras ¢f that can be quantized and to explicitly construct all their possible quantizations.

While the prevailing expectation is that “no-go” results should hold in a wide range of situations, there has
been little work done in this direction since Groenewold and Van Hove (possibly because the mathematical tools
with which to tackle this problem weren’t available). Thus the first step is to check whether the conjecture above
is in fact true in specific examples.

To this end, H. Grundling, C. Hurst, and | considered the quantizati®?,ahought of as the ‘internal’ phase
space of a nonrelativistic particle with spin [GGH]. We chose this example since it is structurally quite different
from R2". We found that a no-go theorem indeed holdsSérLet Py (resp.PK) denote the space of all spherical
harmonics of degrek (resp. of degree at mok}, and letP be the Poisson algebra of all spherical harmonics on
S?. Note thatPy is isomorphic to su(2), which is the basic algebra in this instancePartd u(2).

Theorem 1 There is no nontrivial quantization ¢P, P;). Furthermore, no nontrivial quantization & can be
extended beyong! in P.

Thus there is an obstruction f& which is similar to that foR?", except it is more ‘severe.” Since all possible
quantizations ofP! are explicitly known—these being the familiar spin representations of u(2)—we have thus
completely solved the Groenewold-Van Hove problemSér

H. Grundling and | then turned our attention T6S, taking as a basic algebra the Euclidean algebra e(2)
= span¥, sind, cost}, wheret is the angular momentum conjugate&o We showed that it too exhibits an
obstruction, and completely solved the Groenewold-Van Hove problem in this case as well [GGrul].
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BetweenR?", 2, andT*S, we now have examples which exhibit a wide range of behaviors: from compact
to contractible, and whose quantizations are finite- as well as infinite-dimensional. Thus it would seem reasonable
to conjecture:

Let b be a basic algebra of observables on the symplectic manifbldnd let P(b) be the Poisson
algebra of polynomials generated byThen there is no nontrivial quantization of the p&ak (b), b).

Surprisingly, this conjecture turns out to fadse Consider the torus, thought of R$/Z2. The natural choice
for a basic algebra in this instance is the Lie algebgenerated bysin 27 X, cos 2rx, sin 2ry, cos 2ry}. (Thus
t consists of trigonometric polynomials of mean zero.) Helbe the Hilbert space of quasi-periodic functions

px+my+n =e"Mp(x,y), mneZz
which are square-integrable ov@; 1]2. For eachf e C*®(T?), define a (self-adjoint) operat@( f) onH by

. (of (3 i af 9

Then | have proven the following “go” theorem [Go4]:
Theorem 2 Q is a quantization ofC>°(T?2), t) onH.

Thus there is no Groenewold-Van Hove obstruction to quantizing the torus. However, this example is crucially
different than the previous one®R?", S?, and T*S! all carry finite-dimensional basic algebras, Gt does
not [GGG]. Consequently the irreducibility requirement tois comparatively much weaker than in the other
examples, and so this is likely the reason v@fy (T2) can be consistently quantized. So perhaps the conjecture
above will hold if the basic algebra is required to be finite-dimensional?

Surprisingly, the answer is “No!” A counterexample is provided TR, = {(q, p) € R?|q > 0} with
the “affine” basic algebra a(B: sparipg, g?}. Several inequivalent quantizations of the polynomial algebra
P(a(1)) on L?(R,, dq/q) are explicitly constructed in [GGral], cf. §C.II. Another simple example is either of
the nilpotent coadjoint orbithlL. in sl(2)* with basic algebra sl(2) [GGraZ2].

At this point we have exhaustively studied several examples, with varying outcomes as to the existence of
obstructions to quantization. | summarize these examples below.

[ M [ Type | b [ Type Representations || Obstruction?
R2" | noncompact]| h(2n) | nilpotent infinite-dimensional Yes
&? compact su(2) | simple finite-dimensional Yes
T2 compact t infinite-dimensional| infinite-dimensional No
T*s! | noncompact| e(2) | solvable infinite-dimensional Yes
T*R4 | noncompact| a(l) | solvable infinite-dimensional No
N+ noncompact| sl(2) | simple infinite-dimensional No

Table 1: Summary of known examples.

There is no obvious pattern. Moreover, our treatment of these examples relied heavily on a detailed knowl-
edge of the representations of the relevant basic algebras, and involved complex (and often computer-aided)
calculations. To obtain general results on the occurrence of obstructions, it is clear that we need to suppress the
representational aspects, and focus instead on the Lie and Poisson structures of basic algebras and the polynomial
algebras they generate.

The first key results in this direction were due to Avez [Av1l] and Ginzburg and Montgomery [GiM]. Inspired
by their work, J. Grabowski, H. Grundling, and | were able to produce several no-go results for polynomial
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guantizations. Leb be afinite-dimensionabasic algebra of observables. We broke the analysis up into four
cases, depending upon whetltefor equivalentlyM) is compact and its representations are finite-dimensional.
While space does not permit me to elaborate on the proofs of the following results, | remark that they rely to some
extent on the work of Atkin [At] and Grabowski [Gral, Gra2] on Poisson algebras. Furthermore, in 8C.11 | sketch
a proof (of Theorem 9), which is fairly representative of the techniques involved here.

(i) M Compact, Finite-dimensional Representatiofise main result is [GGG]:

Theorem 3 Let b be a finite-dimensional basic algebra on a compact symplectic manifoldThere exists
no nontrivial finite-dimensional Lie representation Bfib). In particular, there exists no nontrivial finite-
dimensional quantization @ (b), b).

Although not surprising on mathematical grounds, siRg®) is “large,” this theorem does have physical
import, as one expects the quantization of a compact phase space tofydie-@dimensional Hilbert space.

(i) M Compact, Infinite-dimensional Representation®e reduce this to the previous case by observing
that a finite-dimensional basic algebra on a compact symplectic manifold must itself be compact, and hence its
irreducible representations must all be finite-dimensional. Then Theorem 3 applies, and we have [GGG]

Corollary 4 Letb be a finite-dimensional basic algebra on a compact symplectic marifold@here exists no
nontrivial quantization of P(b), b).

Thus, there is an obstruction to polynomially quantizing a compact symplectic marefgdadlessof the
dimensionality of the representation. | emphasize, however, that the finite-dimensionality ofucial; as the
torus shows, Corollary 4 fails if this assumption is removed.

(i) M Noncompact, Finite-dimensional Representatidds.physical grounds one expects a quantization of
a honcompach, if it exists, to be infinite-dimensional. This is what we have rigorously proved in [GGru2]. The
crucial observation is:

Theorem 5 Let b be a finite-dimensional basic algebra on a noncompact symplectic manifold. bThas no
faithful finite-dimensional representations by Hermitian matrices.

Since by definition every quantization @, b) must be faithful orb, we conclude thathere is no nontrivial
finite-dimensional quantization @f), b) on a noncompact symplectic manifolathere O is any Lie algebra
containingb. Combining this with Theorem 3 we can now assert—roughly speaking—that no symplectic man-
ifold with a (finite-dimensional) basic algebra has a finite-dimensional quantization.

(iv) M Noncompact, Infinite-dimensional RepresentatioBmce it is difficult to treat this case inclusively,
we have begun by breaking it into subcases depending on the type of basic algebra. The simplest subcase to
consider is whetb is nilpotent. Then we have shown, building on the results of Wildberger [Wi] and others, that
M must be symplectomorphic to sorRé". (Note, though, thai need not be isomorphic ta2n).) Furthermore,
we have established the following generalization of the classical Groenewold-Van Hove theorem [GGral].

Theorem 6 Let b be a finite-dimensional nilpotent basic algebra on a connected symplectic makifolthere
exists no quantization @P(b), b).

So far we have encountered obstructions in every instance. The present case is the exception: As mentioned
previously, we have shown that there exists a polynomial quantizatidfiRf with the affine basic algebra a(1).
(Note that a(1) is the simplest solvable Lie algebra which is not nilpotent!) However, the behavior exhibited by
this example is not characteristic of solvable algebras, since the Euclidean algebra e(2) is also solvable yet the
quantization ofT *S! is obstructed.

At the other extreme, we have also begun studying semisimple basic algebras. Here again, we encounter
examples which admit polynomial quantizations [GGraZ2]:

Theorem 7 Let M be a nilpotent adjoint orbit in the finite-dimensional semisimple Lie algébi& M admitsb
as a basic algebra, then there exists a nontrivial quantizatiofPgb), b).
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On the other hand, we expect that the quantizations of non-nilpotent orbits will be obstructed although we do not
yet have a proof of this.

Thus we are able to obtain obstructions to quantizidgb), b) in three of these cases. And in the remaining
case (viz. wherb is noncompact and the representation space is infinite-dimensional), there is no universal
obstruction. In this gross sense, then, we have solved the problem of whether obstructions to quantization exist
for polynomial quantizations.

Finally, to close the circle, it turns out that there is a technical gap in Groenewold’s original proof [Gro]. This
gap has been filled in [VH] (see also [AM]) by means of a certain functional analytic assumption. Although
“small,” this gap is nevertheless vexing, and its elimination in this manner is not entirely satisfactory. Recently
[Go6], | have managed to rigorously prove Groenewold’s theonetihout introducing extra assumptions. In
addition, whenn = 1 | have listed the maximal quantizable Lie subalgebras of polynomial observables and
classified their quantizations. Thus the Groenewold-Van Hove problem for polynomial quantizatiBA$ isn
completely solved fon = 1.

(i) GEOMETRIC QUANTIZATION AND QUANTUM CHEMSITRY

I. Mladenov and | have been working on a project in quantum chemistry. It is an open problem to predict the

rotational spectra of even simple molecules, except in certain highly symmetric situations. For instance, while in
[LL] the low-lying energy eigenvalues of a polyatomic molecule can be computed using a recursive technique,

there is no known closed form expression for these quantities. Using geometric quantization theory, however, we
have managed to produce a such an expression for the energy eigenvalues in terms of elliptic integrals [GoMI].
We are currently working on simplifying this (complicated) result, and are investigating several special cases. In

particular, for a diatomic molecule our formula reduces to

h2 1\ h2/1 1
E=—(L+2 —(=-=)m?
2I1( +2> +2<|3 Il)m’

wherel; = Iz # |3 are the moments of inertid, is the angular momentum quantum number, ant the
component of the angular momentum along the molecular axis.

Our formulee are interesting in two regards. First, instead of the téudl + 1) term, we havéd?(L +1/2)2.

One can regard this either as a particular manifestation of the “metaplectic shift” in geometric quantization theory
or as resulting from a “curvature correction” [Wo]. (In the context of angular momentum, this sty 4fis

referred to as the “Langer modification” [La].) Second, they imply that there should exist a rotational rest energy
of h?/811, much like the well-known vibrational zero-point energy. This shift may or may not be physically
correct; in some instances, it gives the right answers (e.g. the vibrational rest energy), but in others it does not
(e.g. spin). So we need to examine the rotational spectra of, say, diatomic molecules for evidence of such a rest
energy.

We do not yet know if this is detectable. Determining this is likely to be difficult; in the realm of quantum
chemistry, even the existence of the vibrational rest energy is a subtle effect which can be observed only via iso-
topic displacement [Her, 8IV.2]. Complicating matters are other degrees of freedom (vibrational, internal) whose
presence tend to “swamp” rotational effects in the energy spectra, as well as the fact that the phenomenological
parameters describing molecules (moments of inertia, for instance) are imprecisely known.

(i) THE MATHEMATICAL STRUCTURE OF CLASSICAL FIELD THEORY

The purpose of this research was to develop and exploit connections between initial value constraints and gauge
transformations in classical field theories. To a substantial degree |, along with collaborators J. Isenberg and J.
Marsden, have succeeded in this. We have shown that many different and apparently unrelated facets of field
theory can be tied together and understood in a fundamentally new way using multisymplectic techniques.

Our research program consists of four components: (A) a covariant analysis of field theories; (B) a space
+ time decomposition of the covariant formalism followed by an initial value analysis of field theories; (C) a
study of the relations between gauge symmetries and initial value constraints; and (D) the derivation of the so-
called “adjoint formalism,” which constitutes the starting point for investigations into the structure of the space of
solutions of the Euler-Lagrange equations, linearization stability, quantization, and related questions.
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This project is virtually finished. Part A has already appeared as a preprint [GIM1], and Part B will appear
this winter [GIM2]. Part C is well understood in the case of purely first class theories, but there are a number
of issues which require further study when second class constraints are present. Finally, the research for Part
D has also been completed. There have been several significant spin-offs from this work as well, including
[Go2, Go3, GoMa, MPS, MS]. When assembled, the results will appear as a research monograph of about 250
pages, which has already been accepted for publication in the M.S.R.1. series (Cambridge University Press).

Human Resources Statement

Interest in the research pursued in this grant has motivated a former graduate student in mathematics, Jason
Hanson, to collaborate with me in on topics in classical field theory. In particular, he has been working out the
details of the adjoint formalism for second order Einstein gravity. A graduate student, Bryon Kaneshige, has
begun working with me on the problem of quantizing semisimple basic algebras, and plans to do his dissertation
in this general area.
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f. Relation of Completed Work to Proposed Work:

My proposed research program is a straightforward continuation of my current NSF supported
research.



Il. Proposed Research Project:Obstructions in Quantization Theory

My proposed research project is a direct followup to my current NSF supported research on the existence of
obstructions to quantization (cf. Section C.I). The main goals of this proposal are:

e To delineate the circumstances under which such obstructions will appear, and to understand the mech-
anisms which produce them. Already substantial progress has been made: My collaborators and | have proven,
in quite general circumstances, the existence of obstructions to obtaining both finite- and infinite-dimensional
guantizations of compact phase spaces as well as finite-dimensional quantizations of noncompact phase spaces.
From a practical standpoint, determining the extent to which a quantization is internally consistent is an essential
part of the quantization program; when one pushes quantization too far all sorts of problems are known to arise.
Thus one needs to know just how far “too far” is; specifically, one needs

e To compute, when an obstruction does exist, the largest subalgebras of observables that can be consis-
tently quantized. While this can sometimes be done in specific examples, little is known in general. Once this is
accomplished, the next step is to classify all their possible quantizations. This line of investigation has brought to
light previously unknown quantizations of several classical systems, and it is important to determine their phys-
ical significance. Again, while this can often be carried out by hand in particular cases, it would be preferable

e To refine extant quantization procedures, or perhaps design new ones, which are adapted to the obstruc-
tion in the sense that they will automatically be able to quantize these largest subalgebras. Typically, standard
techniques are able to quantize only relatively “small” subalgebras of observables, and run into difficulties when
extended beyond these classes of observables. Such a quantization procedure would be of obvious value when
confronted with complicated and poorly understood classical models which need to be quantized.

e My emphasis thus far has been on quantization procedures which are “Hilbert space-based.” It is there-
fore important to determine to what extent they remain valid in other approaches, such as deformation quantiza-
tion, which employs a somewhat “looser” notion of quantization. Anecdotal evidence suggests that the obstruc-
tions encountered in the Hilbert space-based context do indeed carry over to (strict) deformation quantization as
well. A key aim is to elucidate this connection.

The proposed research is in an area of active interest to mathematicians and physicists alike. From a mathe-
matical standpoint, this research will lead to interesting structural insights into the Poisson algebras of classical
systems and their representations. Physically, it will substantially aid in clarifying the correspondence between
classical and quantum mechanics in general, and in particular will enhance our understanding of quantizations of
specific classical systems.

I will discuss each point in turn after giving the background of the problem.

Quantization has always been one of the great mysteries of mathematical physics, dating back to the begin-
nings of this century. There are at this point many ways of quantizing a classical mechanical system, including
the physicists’ original “canonical quantization” [Di] (and its modern mathematical formulations, such as geo-
metric quantization theory [Ki, Wo]), Weyl quantization [Fo], path integral quantization [GJ] and the more recent
deformation quantization [BFFLS, Ri2].

Regardless of which quantization procedure one favors, it is generally accepted—although not necessarily
well substantiated—that quantization is an ill-defined procedure, which is inherently incapable of consistently
guantizing all classical systems. While there is certainly no extant quantization procedure which works well in all
circumstances, and while there some evidence supporting this assertion, it nonetheless bears closer scrutiny.

That any specific quantization scheme has shortcomings probably reflects the fact that there is a myriad of
guantum theories, all of which have the same classical limit. How then is a quantization procedure to select the
physically correct quantum theory amongst these possibilities?

But there are deeper, underlying problems, which are for the most part independent of the particular method
of quantization employed. In this context the conventional wisdom is that it is impossible to “fully” quantize
a given classical system, in a way which is consistent with the physicistsb@dlger quantization oR?". (I
will make this somewhat nebulous statement precise below.) In other words, the assertion is that there exists
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a universal “obstruction” which implies that one must settle for something less than a complete and consistent
guantization obiny system. Each quantization procedure listed above exhibits this defect in specific examples.
That there are problems in quantizing even simple systems was observed very early on. One difficulty was to
identify the analogue of the multiplicative structure of the classical observables in the quantum formalism. For
instance, consider the quantization of the phase sR&twith canonical coordinateg’, pi, i = 1, ..., n}. For
simple observables the the “produst anti-commutator” rule works well. But for more complicated observables
(say, ones which are quartic polynomials in the positions and momenta), this rule itself becomes ambiguous and
inconsistencies arise (see [Fo, §1.1] for a discussion of these factor-ordering ambiguities). Of course this, in and
by itself, might only indicate the necessity of coming up with some subtler symmetrization rule. But attempts
to construct a quantization map also conflicted with Dirac’s “Poisson brackebmmutator” rule. This was
implicitly acknowledged by Dirac [Di, p. 87], where he made the now famous hedge:

“The strong analogy between the quantum R.B. and the classical P.B... leads us to make the
assumption that the quantum P.B.s, or at any rate the simpler ones of them, have the same values as
the corresponding classical P.B.s”

In any case, as a practical matter, one was forced to limit the quantization to relatively ‘small’ subalgebras of
observables which could be handled without ambiguity (e.g., polynomials which are at most quadratipjin the
and theg', or observables which are at most affine functions of the momenta).

Then, in 1946, Groenewold [Gro] showed that the search for an “acceptable” quantization map was futile.
His “no-go” theorem states that one cannot consistently quantize all polynomialsghahne p; onR?", subject
to the requirement that thgd and p; be irreducibly represented. Subsequently Van Hove [VH] refined Groene-
wold’s result. (For discussions of these and related results, see [AM, Ch1, Fo, Gol, Go6, GS, Jo] and references
contained therein.) Thus it is principle impossible to quantize — bgny means — every polynomial observable
onR?" in a way consistent with Sctidinger quantization (which, according to the Stone-Von Neumann theorem,
is the import of the irreducibility requirement on thpe andq'). At most, one can consistently quantize certain
subalgebras of observables such as those mentioned in the preceding paragraph.

Examination of specific quantization procedures provides corroboration for Groenewold’s result. Consider
for instance geometric quantization theory, in which context the only observables which are quaatjzabie
are those whose Hamiltonian vector fields preserve a given polarization [BI1, Wo]. While this does not preclude
the possibility of quantizing more general observables, attempts to quantize observables outside this class usually
result in inconsistencies. lall instances, the set @& priori quantizable observables forms a proper Lie sub-
algebra of the Poisson algebra of the given symplectic manifold. This observation leads one to expect that
Groenewold-Van Hove obstructions to quantization should be ubiquitous.

The principal question | wish to investigate is whether this is actually true: Under what conditions do no-go
theorems hold for general symplectic manifolds? For nearly half a century Groenewold’s theorem was essen-
tially the only result along these lines (possibly because the mathematical tools with which to tackle this problem
weren'’t available). Then, during the past few years, H. Grundling, C. Hurst, and | proved that there are obstruc-
tions to quantizing both the sphe® [GGH] and the cylindef*S! [GGrul]. At the same time, | showed that
no-go theorems areot universal: There are no obstructions to quantizing either the fBfuGo4] or T*R
[GGral]l An important point, therefore, is to understand the mechanisms which are responsible for these diver-
gent outcomes.

With several examples now in hand, it is possible to probe deeper and try to understand the underlying
reasons for the existence (or nonexistence) of obstructions to quantization. To set the stage for this, | intro-
duce some terminology. L& be a connected symplectic manifold, with Poisson algéBfa(M), {-, -}), where
{-, -} is the Poisson bracket.

Definition 1 Let O be a Lie subalgebra ¢&8>°(M). A prequantizatiorof O is a linear map2 from O to the
linear space O®) of symmetric operators which preserve a fixed dense dotaim some separable Hilbert
spaceH, such that for allf, g € O,

1 These results are described in “Results from Prior NSF Research,” §C.I.
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Q1) Q(f.gh = lQ(H), Q@]

(Q2) if O contains the constant function 1, théxil) = |, and

(Q3) if the Hamiltonian vector fielK ; of f is complete, the®( ) is essentially self-adjoint ob.
If O = C%(M), the prequantization is said to hdl. Q is nontrivial provided codim ke® > 1.

Prequantizations in this broad sense are usually easy to construct [Ch3, Ur]. Van Hove was the first to pre-
quantizeC>(R2") [VH]. Notice that no assumptions are made regarding the multiplicative structufevisia-
vis Q.

Unfortunately, prequantization representations of the entire Poisson algebra of a symplectic manifold tend
to be flawed physically. For instance, the Van Hove prequantizatidR®®fis not unitarily equivalent to the
Schiddinger representation of the Heisenberg groupnii{BI1], while the Kostant-Souriau prequantizations of
<2 do not reproduce the standard spin representations of SU(2) [Wo]. In both examples the prequantization
Hilbert spaces are ‘too big.” The main problem is how to remedy this, in other words, how to modify the notion
of a prequantization so as to yield a genuguantization

Several notions of what constitutes a quantization map can be found in the literature. Some versions (e.qg, [Ki,
Is]) take a certain “basic algebréa’c C° (M) of observables and then define a quantization as a prequantization
which is irreducible orb. For example wheM = R?", b is the Heisenberg algebraam), and whenM = S,
one would takéb = su(2).

A different definition of a quantization is a prequantizat@rwhich satisfies a “Von Neumann rule,” that is,
some given relation between the multiplicative structur€%f(M) and operator multiplication ok. There are
many different types of such rules [KLZ, KS, VN], the simplest being of the form:

Qo ) =p(Q(f)

for some distinguished observablés= C*°(M) and smooth functiong € C*(R).

A third type of quantization is obtained by polarizing a prequantization representation [BI1, Wo]. In the
context of Poisson algebras, a ‘polarization’ is a maximal commuting Lie subalgefmithe complexification)
of C>*(M). Then one requires for the quantization m@phat the imageQ(A4) be maximally commuting as
operators in an appropriate technical sense.

These three approaches to a quantization map are not independent; in fact, there exist subtle connections
between them which are not well understood. But at the core of each approach is the imposition—in some
form—of an irreducibility requirement which is used to ‘cut down’ the prequantization representation. Since this
is most apparent in the first approach, | will concentrate henceforth on it.

The first order of business is to determine exactly what constitutes a “basic algebra” of observables. After
much trial and error, the following definition seems to be the most appropriate.

Definition 2 A basic algebra of observablésis a Lie subalgebra d€>°(M) such that:
(B1) b is finitely generated,
(B2) the Hamiltonian vector fieldx ¢, f € b, are complete,
(B3) b is transitive and separating, and
(B4) bis a minimal Lie algebra satisfying these requirements.

| briefly elaborate on this definition; a more detailed discussion can be found in [Go5]. First, it is natural
to require that a basic algebra be finite-dimensional, but this turns out to be overly restrictive. For example,
in [GGG] it is shown that the torus has no finite-dimensional basic algebras. The obvious choice for a basic
algebra oriT? = R?/Z? is the Lie algebra of trigonometric polynomials of mean zero [Go4], which is of course
infinite-dimensional. However, note thiais generated by the finite set

{sin 27X, cos Zrx, sin2ry, cos Zry},
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so that one still has a finite number of “basic observables” with which to make measurements. | therefore do not
demand thab be finite-dimensional, and instead merely require (B1).

The completeness condition (B2) guarantees that a basic observable generates a one-parameter group of
canonical transformations. In view of (Q3), it is the classical analogue of the requirement that an operator repre-
senting a physically observable quantity should be essentially self-adjoint, whence it generates a one-parameter
group of unitary transformations.

Next consider the transitivity requirement in (B3), which means {iat(m) | f € b} spansTyM at every
point. Whenb is finite-dimensional, it together with (B2) enable one to integtate a transitive action of the
simply connected group with Lie algebrab on M, whenceM is a Hamiltonian homogeneous spaceBorThe
appeal of transitivity is that it is a classical version of an irreducible representation: Using the transitive action of
B, one can obtain any classical state from any other one, in direct analogy with the fact that every nonzero vector
in a Hilbert spacei is cyclic for an irreducible unitary representation Bf on 7. Furthermore, transitiv-
ity implies the following nondegeneracy condition, which is reminiscent of the quantum mechanical notion of
“operator irreducibility”:{ f, g} = O for all f € b impliesg is constant.

As part of (B3) | also require thdt globally separate classical states. This ensureshthaturately reflects
the topology ofM [Ve]. Without it, e.g., the Lie algebredefined above could equally well live on eittie# or T2
(or even “halfway between,” o *S!); measurements usirigould not distinguish amongst these phase spaces.

Finally, the minimality condition (B4) is crucial: The quantization of a p&h, b) with b nonminimal in this
sense can lead to physically incorrect results. For instance, without this condition it would often be possible to
find full quantizations; indeed, it may happen that a prequantization representation is itself irreducible [VH, Ch3].

There is no guarantee that a given symplectic manifold will carry a basic algebra. Indeed, the next proposition
shows that those phase spaces which admit basic algebras form a quite restricted class [Go5].

Proposition 8 If a connected symplectic manifod admits a finite-dimensional basic algebsathenM is a
coadjoint orbit inb*.

Despite this,M may still carryinfinite-dimensional basic algebras, as happensTfarNot much is known
regarding these, cf. [Is, 84.8.4] for further discussion.

With this definition of a basic set, | am now ready to state what | mean by “quantization” [Go5{) beta
Lie subalgebra o€°° (M), and suppose thatc O is a basic algebra of observables. Two eminently reasonable
requirements to place upon a quantization are irreducibility and integrability [BR, Fl, Is, Ki].

Definition 3 A quantizationof the pair(O, b) is a prequantizatio® of © on Op(D) satisfying
(Q4) Q[ bisirreducible,
(Q5) D contains a dense set of separately analytic vectors for a Lie generatinggt)oaind

(Q6) Q| bis faithful.

Irreducibility is of course one of the pillars of the quantum theory, and we have already seen the necessity
of requiring that a quantization map represeirreducibly. Regarding integrability, first consider the case when
basic algebra is finite-dimensional. Then it is natural to demand that the Lie algebra representatibe in-
tegrable to a unitary representation Bf That integrability will follow from the technical condition (Q5) is a
theorem of Flato et al., cf. [FI] and [BR, Ch. 11]. (There do exist nonintegrable representations, e.g. of the
Heisenberg algebra [RS, p. 275]; however, none of them seem to have physical significance. (Q5) thus serves to
eliminate these “spurious” representations.) If it happensttginfinite-dimensional, then there need not exist
a Lie group having as its Lie algebra. Even if such a Lie group existed, integrability is far from automatic, and
technical difficulties abound [ARS]. Thus | will not insist that a quantization be integrable in general. On the
other hand, the analyticity requirement in (Q5) makes sense under all circumstances, and does guarantee integra-
bility when b is finite-dimensional, so | adopt it in lieu of integrability.



Finally, the faithfulness requirement (Q6) seems reasonable in that a classical observable can hardly be re-
garded as “basic” in a physical sense if it is in the kernel of a quantization map. In this case, it cannot be obtained
in any classical limit from a quantum theory.

While considerable effort has gone into fine tuning these definitions, there are other requirements that one
might wish to include. (A detailed discussion can be found in [Go5].) For example, one could strengthen the
definition of a basic algebra by replacing (B3) by the condition that the Poisson algebra generates dgnse
in C*(M). One could also modify the axioms for a quantization, for instance by adopting Souriau’s requirement
that bounded classical observables should quantize to operators with bounded spectra [Zi]. Such changes could
have profound consequences. In particular, if one modified (B3) as indicated, then both &{B.oand sl(2) on
N+ would be eliminated from the ranks of basic algebras. On the other hand, Proposition 8 shows that the given
definition of basic algebra is already quite restrictive. | have framed the definitions so as to strike a compromise
between these competing tendencies, while keeping physical considerations at the forefront. With regard to the
latter, | emphasize that the definitions above are closely tailored to reflecpiwsitistsnean when they speak of
“basic observables” and “quantization.” In particular, there are many notions of quantization in the mathematical
literature (in connection with quantum groups, $patructures and Riemann-Roch theorems, deformations of
associative algebras, etc.) which, however, are often only vaguely related to “quantization” in the physical sense.
Thus, from a mathematical standpoint, | take “quantization” to mean basically the process of obtaining certain
types of representations of (Lie subalgebras of) Poisson algebras.

| am for the most part interested in the existence of polynomial quantizations, i.e., quantizati®*(s)oh)
whereP(b) is the Poisson algebra of polynomials generate#l.dyet P¥(b) denote the subspace of polynomials
of minimal degree at mot. (Since P(b) is not necessarily freely generated byas an associative algebra,
the notion of “degree” may not be well-defined, but that of “minimal degree” is.) In the cases when degree
does make sense, 1Bk (b) denote the subspace of homogeneous polynomials of degig@en also introduce
P (b) = +1>k P (b). Whenb is fixed in context, | simply write® = P(b), etc.

Table 2 following provides a summary of what is known about polynomial quantizations in general (cf. 8C.1).
For the time being, assume thais finite-dimensional.

| Finite-dimensional quantization$ Infinite-dimensional quantizations

M compact No No

M noncompact No Sometimes, but not always

Table 2: Do quantizations @ (b), b) exist?

We are thus left with trying to understand the noncompact, infinite-dimensional case, which is naturally the
most interesting and difficult one. Here one has little control over either the types of basic algebras that can
appear (in examples they range from nilpotent to simple), the structure of the polynomial algebras they generate
(the codimension of the commutator id¢&, P} can be at least 0,1, o), or their representations. It is instruc-
tive to compare this with what happens whdris compact: Theib is compact semisimple and codiR, P} =1
[GGG]. Nonetheless, as discussed in §C.I, we are able to prove a ho-go theorert iwimipotent, and to con-
struct counterexamples when it is solvable or semisimple.

Now observe that four of our examples fall into this categdR?", T*St, T*R.., and N.. The first two
exhibit obstructions, while the last two do not. Comparing the behavior of these examples, as well aSthat of
which is also obstructed, | attempt to extract the key features which govern the appearance of obstructions to a
polynomial quantization. Of course, any conclusions that can be drawn at this point are necessarily tentative, due
to the paucity of examples against which to test them. Nonetheless, some interesting observations can be made,
which may prove helpful in subsequent investigations.

| think the key lies in an examination of how the polynomial quantization$ ‘@® . and N.. come about,
since they relies upon some structural propertieB efhich are not present in our other examples. Therefore |
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now discussl *R in detail (N works similarly). Recall that the “affine” basic algebra®fiR ;. is

a(1) = sparipg, g3).

Upon writingX = pg, Y = g, the bracket relation becomgX, Y} = 2Y. The polynomial algebr® = R[X, Y]
is freely generated b, and has the crucial feature that for e&ch 0, the subspaceR aread-invariant, i.e.,

{P1, A} C P 2

(Note thatP; = a(1)). Because of thigP, B} C Py, whence eactPy, is a Lie ideal. We thus have the
semidirect sum decomposition

P=PlxPy. (3)

SincePyy) is a Lie ideal, | can obtain a quantizatighof all of P simply by finding an appropriate representation
of P1 = R @ Py and setting2(P2)) = {0}!

The simply connected covering group of a(1) is isomorphic to the grauflA= R x R, of orientation-
preserving affine transformations of the line (hence the terminology). Sin¢&)As a semidirect product its
unitary representations can be generated by induction; | compute

(Us (v, D¥)(@) = €579/ (hg)

on L2(R,, dg/q). These two representations (one for each choice of sign) are irreducible and inequivalent;
moreover, they are the only irreducible infinite-dimensional unitary ones. Writing= —ih dUy | get the
quantization(s) of a(1) oh?(R,, dg/q):

o d
74(pg) = —Ihqd—q, 7+(9%) = £9°.

Extend these tP! by demanding thatr.(1) = |, and setQ+ = 7+ @ 0 (cf. (3))? These are evidently
prequantizations oP, by construction (Q4) and (Q5) are satisfied, &hd | P, = w1 are clearly faithful. Thus
Q. are the required quantization(s) @, P1).

What makes this example work? It is clear that this polynomial quantization exists because one cannot de-
crease degrei@ P by taking Poisson brackets. (That is (2) holds, as opposed to m@ely} ¢ PX.) On the
other hand, a careful look at the derivations of the obstructions in [Go6, GGrul, GGRPtoT *St, and S?,
respectively, shows that the controlling factor is apparently that in these examplearothecrease degree i
by taking Poisson brackets.

There are two—and only two—circumstances under which taking Poisson brackét$)ircan decrease
degreé®

(D1) 1€ {P(b), P(b)}, and
(D2) There exishonzeroCasimirs in the symmetric algeb8ib) overb.*

Condition (D2) implies thaP (b) is not freely generated by as an associative algebra. Specifically, (D2) holds
whenevet is semisimple and has a nonzero compact ideal. At the other extremepvgeitpotent, (D1) holds.

Indeed, a nilpotent algebra has a center, and (B3) implies that this center consists of constants. An examination
of the descending central series fothen shows that & {b, b}. In the examplesR?" satisfies (D1) but not (D2),

2There are also quantizations for whigh. (P(2)) # {0}, cf. [GGra1l].

3A priori, a third circumstance would be if& b. Using the minimality condition (B4), it is not difficult to prove that there X b, b}, so
this is actually a subcase of (D1).

4 A Casimiris an element of the Lie center &b) which has no constant term. @ is a Casimir, then by (B3) its projection @(b)
is a constant. Thus this condition means that this constant must be nonzero; in other words, when viewed as a fudctiorarC is
nonvanishing.
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& satisfies (D2) but not (D1), ant*S! satisfies both. On the other hand, bathR,. and N.. satisfy neither
condition.

On the basis of this “anecdotal” evidence, | propose that a general Groenewold-Van Hove theorem takes the
form:

Conjecture 1 Let M be a symplectic manifold with a finite-dimensional basic algébr8uppose that the poly-
nomial algebraP (b) satisfies eithe(D1) or (D2). Then there is no nontrivial quantization @®?(b), b).

Indeed, is possible to directly verify this conjecture under certain circumstances.
Theorem 9 Conjecturel is valid when eitheM is compact or the representation space is finite-dimensional.

| sketch the proof so as to give a flavor of the techniques involved, which are fairly representative. Restrict
attention to the case of finite-dimensional representations; the general case can easily be reduced to this. So
suppose? is a quantization oP (b) on a finite-dimensional Hilbert space, whence &enas finite codimension
in P(b).

As Q(b) consists of hermitian matrice§) is completely reducible. Since by (Q®) is also faithful,b is
reductive. As a consequendesplits as the Lie algebra direct sun® s, wherej is the center ob ands is
semisimple. Now transitivity implies that any function which Poisson commutes with every elemiemhwst
be a constant, so thatC R. But if equality holds thers would be a separating transitive subalgebra, thereby
violating (B4). Thug = {0} andb is semisimple.

| need the following result, which is proven in [GGG].

Lemma 1 If L is a finite-codimensional Lie ideal of an infinite-dimensional Poisson algBbnrath identity, then
either L contains the commutator ide&P, P} or there is a maximal finite-codimensional associative idkal
P such that{P, P} C J.

Now apply this Lemma td. = kerQ c P(b). First suppose thdtP(b), P(b)} € L. Then semisimplicity
givesb = {b, b} C L, and soQ | b = 0, which contradicts (Q6).

Thus there must exist a maximal finite-codimensional associative dd&aP (b) with {P(b), P(b)} € J. If
p is the projectionS(b) — P(b), thenK = p~1(J) is a maximal finite-codimensional associative ideaSii)
with {S(b), S(b)} < K. Sinceb = {b, b} C {S(b), S(b)} € K, and since ¥ K (asJ, and thusK is proper), it
follows thatK is the associative ideal generatedtby

If (D1) holds then 1€ J, which cannot be. So suppose (D2) holds, so that there is a nonzero Casimir
C € S(b). Transitivity implies thato(C) = ¢ for some constant # 0. By the definition of a Casimir and the
above remark€ € K. ThenC — ¢ ¢ K, for otherwisec € K, which is at odds with the propernesskf But
this contradicts the fact th&@ — c € kerp C K, and the theorem is proven.

Thus Conjecture 1 is consistent with the results listed in Table 2. Furthermore, by generalizing the construction
of the polynomial quantization oh*R., one sees that the hypotheses of Conjecture 1 are centeogssary

Theorem 10 Suppose that the polynomial algebRyb) satisfies neither conditiofD1) nor (D2). Then any
nontrivial quantization oft extends to a quantization 6P (b), b).

Lastly, | observe that the finite-dimensionality assumptionbdn Conjecture 1 is necessary as well: The
symmetric algebr&(t) on T2 certainly contains Casimirs, but the conjecture is violated.

Establishing the validity of Conjecture 1 is the main goal of this propoBatorems 9 and 10 strongly suggest
that the conjecture is correct (and, if not, then surely not too far off the mark). Still, completing its proof—that
is, whenM is noncompact and the quantizations are infinite-dimensional—seems to be a difficult problem. In
particular, the proof of Theorem 9 (as well as that of Theorem 3) relies on Lemma 1, which in turn is predicated
on the finite-codimensionality of k€. As there is no apparent reason why this should be so under the stated
circumstances, different techniques will be required to handle this case.

For instance, here is an “algebraic no-go theorem” which does not require that the codimensio@ tieker
finite [GGral]:
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Theorem 11 Let P be a unital Poisson subalgebra @&°° (M, C). If as a Lie algebraP is not commutative, it
cannot be realized as an associative algebra with the commutator bracket.

To apply this result to polynomial quantizations, suppose ¢hat P(b) — Op(D) were a quantization of
(P(b), b) on some invariant dense domdnin a Hilbert space. By requirin@ to be complex linear, we may
regard it as a quantization &f = P(b)c. Define A C Op(D) to be the associative algebra generated &by
{Q(f)| f € b} together withl (if 1 & b). If it can be shown that any sueg® must be a Lie algebra isomorphism
of P(b) onto A, then Theorem 11 will yield a contradiction. One can use this result to give an alternate proof of
Groenewold’s theorem; in fact, it is the key ingredient in the proof of Theorem 6 [GGral].

It may be necessary to work through a few more examples before one is able to gain sufficient insight into
this problem. One example worth studying are the various coadjoint orbits for the symplectic algebr&¥p(2
Another would be arbitrary cotangent bundles (although theiill typically be infinite-dimensional). As well,
it would be useful to consider basic algebras of a more general type than the ones we have encountered thus far
(which were all either solvable or semisimple). | have also restricted consideration to polynomial algebras to a
large extent, but there are other subalgeltfasf C>°(M) which are of interest (e.g., oR?", those functions
which are constant outside some compact set [Ch3]).

Of our six examples, the torus is clearly much different than the others. Because the basictatgelfirate-
dimensional, the irreducibility requirement (Q4) loses much of its force—so much so that it precludes the exis-
tence of an obstruction. So it seems equally reasonable to propose

Conjecture 2 Let M be a symplectic manifold arida basic algebra withP1(b) dense inC>®(M). Then there
exists a nontrivial quantization gC>° (M), b).

A necessary condition fo® to be a full quantization ofC*° (M), b) is thatQ represenC> (M) itself irre-
ducibly. It turns out [Ch2, Tu] that this is so for all Kostant-Souriau prequantiz&tidmss it is natural to consider
the case wheM is prequantizable in this sense. In fact, in this context [Tu] gives even more:

Proposition 12 Let M be an integral symplectic manifolt, a Kostant-Souriau prequantization line bundle over
M and Q, the corresponding prequantization map. bete a basic algebra witlP1(b) dense irC>(M). Then
Q| represent$ irreducibly.

Let Dc = I'(L)¢, the compactly supported sectionslaf By construction@ : C*°(M) — Op(Dc) satisfies
(Q1)—(Q3) and (Q6). This proposition guarantees thatatisfies (Q4) as well. Thus to obtain a full quantization
it remains to verify (Q5) on some appropriately extended dorbginnfortunately, it does not seem possible to
do this except in specific instances. Noting that the quantizatioh2ofjiven in §C.| is actually a Kostant-
Souriau prequantization with Chern numié¢r= 1 [Go4], a first test would be to understand what happens for
the Kostant-Souriau prequantizations(fﬂm(Tz), t) with N # 1. Still, Proposition 12 does provide a certain
amount of support for Conjecture 2.

The “gray area” between Conjectures 1 and 2 consists of symplectic manifolds with basic abgebrakich
P1(b) is infinite-dimensional, yet not dense@™ (M). Perhaps the infinite-dimensionality bfalone is enough
to guarantee the existence of a full quantization? In any event, it might be fruitful to search for more examples of
full quantizations.

Setting aside the question of the existence of obstructions, | now suppose that there is an obstruction to, say,
a polynomial quantization, so that it is impossible to consistently quantize &l(of. The question then is:
What are the largest Lie subalgebrégs c P(b) containing the given basic algebitasuch that(O, b) can be
guantized™odulo technical issues, given a representatibaf b on a Hilbert spacé{, one ought to be able to
induce a representation of its Lie normalize&b) in P(b) onH. (Indeed, the structure(b), b) brings to mind
an infinitesimal version of a Mackey system of imprimitivity [Ma].) Thus it seems reasonable to assert:

Conjecture 3 Let b be a finite-dimensional basic algebra. Then every quantizatioh odn be extended to a
guantization ofn(b), b).

5 However, there are other prequantizations which do not repr@s&i) irreducibly; for instance, the prequantization of Avez [Av2,
Ch3].
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This is in exact agreement with the examples. In particularRr one hasi(P1) = P2, and forS? one
computesn(P;) = PL. Moreover, in both cases we have shown that these normalizers are in fact maximal
guantizable Lie subalgebras of polynomials [Go6, GGH]. It is therefore tempting to conjecture that no nontrivial
quantization of(n(b), b) can be extended beyondb) [GGT], which is indeed the case for boR" and S2.

If true, this would also point where to look for a Groenewold-Van Hove contradiction, viz. just outside the
normalizer. Alas, this is false: For the cylindetP1) = PL. Butin [GGrul] we showed that any representation
Q(Py) can be extended, in infinitely many ways, to quantizationd df P;), whereL1 is the Lie subalgebra of
polynomials which are affine in the (angular) momentum. It is not clear how one could “discover” this subalgebra
given just the basic algebra® (but see below). An outstanding problem is therefore to determine the largest
Lie subalgebras of quantizable observables. Unfortunately, this is extremely difficult in general. Just classifying
maximal Lie subalgebras of polynomials is daunting; for instance, this problem has not been solved B#&n for
whenn > 1 [Go6].

This is reminiscent of the situation in geometric quantization with respect to polarizations. Suppotesthat
polarization ofC*(M,C). Then one knows that one can consistently quantize those observables which preserve
A, i.e., which belong to the real part af.4) [BI1, Wo]. In this way one obtains a “lower bound” on the set
of quantizable functions for a given polarization. If one takes the antiholomorphic polarizati®f, dhen it
turns out that the set @f priori quantizable functions obtained in this manner is precigélyBut it may happen
that the real part ofi(A4) is too small, as foR2" with the antiholomorphic polarization. In this case the real
part ofn(A) is only a proper subalgebra &2, and in particular is not maximal. This reflects the fact that the
metaplectic representation cannot be derived by polarizing a prequantization. Furthermore, in the case of the
torus, introducing a polarization will drastically cut down the setgdriori quantizable functions, which is at
odds with the existence of a full quantization of this space. So geometric quantization is not a reliable guide
insofar as computing maximal quantizable Lie subalgebras of observables. On the other hand, the subalgebra
is just the normalizer of the vertical polarizatiim(©)} on T*S!, so this subalgebra finds a natural interpretation
in the context of polarizations. Clearly, there must be some connection between polarizations and basic algebras
that awaits elucidation.

Assuming that one can in fact determine the largest Lie algebras of quantizable observables, the next problem
is to classify all their possible quantizationgigain, this can only be done on a case-by-case basis at present.
However, some interesting phenomena already have come to light in those examples which have been analyzed
in detail. For instance, i€ denotes the Lie subalgebra of polynomialsR# which are at most affine in the
momenta, then it turns out [Go6] thaE, P1) can be consistently quantized, and moreover aingiuantization
thereof is unitarily equivalent t@,, defined by

n,o (LD 1 . 7 af
(> fl@p +g@ )| =-ihd (f'(q)—i + [—+In] —(?)) +g(a), 4
: = aq 2 aq

i=1

wheref!, g are polynomials ang € R. Wheny = 0, this is the familiar “position” or “coordinate representation.”

But for n # 0 the Q, are genuinely new quantizations, and it evidently is of interest to see if they have any
observable consequences or physical applications. The significance of the paramesgaiored in [ADT, Hen].

There it is shown that while the quantizatio@g and Q,, are unitarily inequivalent ify # ', they are related

by a nonlinear norm-preserving isomorphism. Similarly the physical significance of the full quantization (1) of
C°°(T?) remains unclear; it is interesting that this quantization appears (in a completely different context) in solid
state physics, where it is known as tHe“representation” [Za].

Apropos the remarks above, it would clearly be worthwhile, presuming that it is somehow possible to predict
the maximal set(s) of quantizable observakdepriori, to see whether one can use this knowledge to refine
geometric quantization theory, or tievelop a new quantization procedure, which is adapted to the Groenewold-
Van Hove obstruction in that it will automatically be able to quantize this maximal set of observébléss
regard, | note that many of the quantizations we have computed (such &, thie(C, P1) given by (4) with
n # 0, or the metaplectic quantization 62, P1), both onR2") cannot be derived using geometric quantization
theory. Again, afirst step here would be to recast the Groenewold-Van Hove results in terms of polarizations. Such
a quantization procedure would be of obvious value when one is confronted with complicated classical systems,
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such as homogeneous cosmological models [Gl], whose quantum analogues are at best poorly understood.
Here | have focused on the quantization of symplectic manifolds. It is natural to wonder to what extent these
results will carry over to Poisson manifolds, or even to abstract Poisson algebras.

My approach is designed so as to obtain results which are independent of the particular quantization scheme
employed, as long as it is Hilbert-space based. Therefore it is interesting that some of the go and no-go results
described here have direct analogues in deformation quantization theory, since this theory was developed, at least
in part, to avoid the use of Hilbert spaces altogether [BFFLS]. So for example [Ri1], the no-go res#it for
is mirrored by the fact that there are no strict SU(2)-invariant deformation quantizatid@®® ¢8%), while the
go theorem foiT 2 has as a counterpart the result that there do exist strict deformation quantizations of the torus.
Since every symplectic manifold admits a (formal) deformation quantization [Ko], it is sometimes asserted that the
existence of Groenewold-Van Hove obstructions necessitates a weakening of the Poisson-breahkehutator
rule (by insisting that it hold only to orddr). This is far from clear, however, for two reasons. First, this very
fact indicates that in general a deformation quantization is not a “quantization” in any true physical sense, since
certainly there are symplectic manifolds which cannot be recovered in the lirhit-as 0 from any quantum
system. What is probably required in this context is not merely a formal deformation quantization, but rather an
appropriately invariant strict deformation quantization [Ri1, Ri3]; see also [Fr]. Second, as the observations above
indicate, weakening the Poisson bracketcommutator rule may not suffice to remove the obstructions. There
are undoubtedly important things to be learned by getting to the heart of this analogy.

kkkkkkkkkkkkkkkkkhhhhkkkkkkkhhhhhhhrkixxkx

Two colleagues will be collaborating with me on my proposed research project: Prof. Janusz Grabowski
(Mathematics Institute, University of Warsaw, Warsaw, Poland), an expert in the field of Poisson algebras, and
Prof. Hendrik Grundling (Pure Mathematics, University of New South Wales, Sydney, Australia), a mathematical
physicist specializing in quantum field theory and functional analysis. Both have collaborated with me in the past
on my NSF-sponsored research.
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